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Phase diagrams classification of the systems with thermoreversible
alternating association (the Flory approach )

M. V. Thamm and I. Ya. Erukhimovich®
Physics Department, Moscow State University, Moscow, 119992 Russia

(Received 14 March 2003; accepted 2 May 2003

We consider incompressible blends fgf and f,-functional monomerss, and Bt,, capable of

forming thermoreversible bondsB only between unlike monomers with an equilibrium Arrhenius
association constamt=k, exp(—&/T). Effects of the parameteffs, f,, ko, ande on the global

phase behavior of these systems are analyzed within the conventional Flory approach. An explicit
topological classification of all types of phase diagrams is given via buildjrihe phase portraits,

i.e., separation of the plane (tp,¢) into the regions corresponding to topologically similar phase
diagrams, andii) typical phase diagrams on tffeolume fraction;T) plane for all regions of the

phase portraits. The phase behavior of the systems with alternating association is found to be rather
sensitive to the values of the parameterskgle) and diverse. In particular, seven possible types of
phase diagrams with topologically different binodals are found. Nontrivial phase behavior in the
systems with alternating association includes closed immiscibility loops, triple points, metastable
critical points, and even completely metastable phases. The main trend governing all the variety of
these phase diagrams is an association-induced increase in the thermodynamic stability of blends of
stoichiometric composition. In particular, low-temperature blends of stoichiometric composition
turn out to be thermodynamically stable #&/20)>(f;+f,) "1, where® is the value of thed
temperature measured in energetic units.2@3 American Institute of Physics.

[DOI: 10.1063/1.1586253

I. INTRODUCTION system (actually, the simplest irreducible two-component
ong is a system where two sorts of identical associating
The theoretical description of two- and multiple- particles are present, each particle bearing the identical func-
component associating systems is of great theoretical angbnal groups onlysay,A;, andBy ), and only unlike groups

technological interest. From the practical point of view, thisg e capable of forming thermoreversible saturated bond
interest is also based on the fact that most of the solutiong _g. \\e refer to this system as that with alternating asso-
studied in biology(water solutionsand earth sciencesili-  cjation. It is both a good referent system and of certain
cate melts belong to the class of associating systems. Thephysical interest itself, since some systems with donor—
association of the components in these solutions is known tgcceptor interactions can be treated as those with alternating
induce different types of interesting phase behavébosed  association. To our knowledge, the only theoretical studies of
immiscibility loops, metastable critical points, eutectic yyis class of associating systems were undertaken in Refs.
points, and so on" For example, water-water and water— 1921 Tanaka and Ishiti® have stressed that the most
PEO associations cause the closed immiscibility loops on thgnaracteristic peculiarity of the systems under consideration
phase diagrams of PEO/water systémdhus, it is impor- s the increase in thermodynamic stability of the blends with
tant to learn which characteristics of association are responsgichiometric concentration. Patlazhan and Ladyzhiflsky
sible for one or another type of the phase behavior. have found a possibility of phase diagrams with closed im-
A theory describing the phase behavior of two- migcibility loops in these systems. However, there are some
component associating systems should start obviously witthaccuracies in the aforementioned papers we address later in
some simple reference systems where the main tendencigsre detail. Thus, even a thorough investigation of the ther-
governing this behavior can be easily investigated. The Simyqgynamics of systems with alternating association in the
plest example of such a referent system is that where all thg; mework of the most commonly used Flory gelation
associating particles are identical and bear identical funcfheor)?Z'BiS a still unsolved and interesting objective.
tional groupsA capable of forming thermoreversible sgtg— However, in the present paper we address the even more
rated bondA—A with each other. This system, even if it yqpitious problem of topological classification of all phase
includes also a nonassociation component, can be easily rfjagrams possible in the systems under consideration. The
duced to a one-component associating system and the COMSrocedure to solve this problefiwhich is, actually, just a
sponding theory is rather well develop&d®We refer to this simplified version of catastrophe thedfyhas been applied
system as that with self-association. The other basic modg}, analyze the phase behavior of one-component thermor-
eversible gef§*” and the coil-globule transition in the pres-
dElectronic mail: ierukhs@polly.phys.msu.ru ence of self-associating solvefitHere we apply this proce-
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/k b1+ Po=1 (4)

-
/|\ /L .. ~ and we presume for simplicity that the excluded volurnes
_ of the components are equal.

/l\ )\ 3 Now, to calculate the structural contribution into E2)
]

we use, in the present paper, the Flory approach of the theory

e et . ‘ of thermoreversible gelatioli:*>?® As shown in Ref. 13,
)\ /]\ . -~ .. within this approach the structural free energy can be written
\[/ as follows:
. f
@) (b) Fst(p1,p2) =Fia(p1) +Fig(p2) + minF 3 (p1,pa)
{Pa

FIG. 1. The typical clusters of bonds formed in the system with alternating ¢
associationA andB functional groups are shown by solid and dashed lines, +F Zoicd P2:Pa) T Foond Pa) |- 5)
respectively(a) f;=f,=3 and(b) f,=3, f,=2.

Here the first two terms are just the free energies of ideal

gases oiAfl(sz) monomers:
dure to a new associating system: i.e., that with alternating

association. Fia(p)=pInple. (6)

The further presentation is organized as follows: In Sec. ) ) )
Il we describe the model and calculate the free energy of thdne third and fourth terms are just the free energies of the
systems with alternating association. Section IIl, which playd€distribuiton of all thef,p,(f2p2) functional groups of the
the central role in the paper, is devoted to the classification of°rtA(B) present per unit volume intp, reacted andp
phase diagrams itself. In Sec. Il A we explain the general™ Pa Unreacted ones:
procedure of the phase diagrams construction and classifica- _t,
tion and derive the equations defining the critical points of ~  choicd Pi »Pa) = fipilTi INT'i+ (1=T)In(1=T)], @)

the system. In Secs. 1lI B and Ill C we present the classificaypare the conversiorE; = p,/f,p;, i=1,2, are introduced.

tion of phase diagrams—i.e., plot the phase portraits angtpe |55t term in Eq(5) is the free energy of bond formation
examples of all topological types of phase diagrams for th‘?tself which is as follows®

symmetric and asymmetric systems, respectively. Finally,
Sec. IV includes a brief summary and some discussion of the F,  {p)=—pIngp/e. )

results of the paper. _ S o _
Carrying out the minimization prescribed in £§) one finds

Il. FREE ENERGY OF THE SYSTEM the flna.tl expression for the structural contribution into free
WITH ALTERNATING ASSOCIATION energy:

In this paper we consider the system consisting of _ o o r _
two types of moleculeg\; and By, bearing, respectively, Fsul(p1.p2) izzl,z Fia(p) + fipilIn(1=T3) +1/2],
f, and f, functional groupsA and B capable of forming 9

thermoreversible bond between each offsee Fig. ) where the conversioris, , are related to the densitigs , by

A+B « AB, (1) the mass action law
k(T)

whereT is the temperature measured in energetic uftite fikpy =T /[(1-I')(1-T3)],

Boltzmann constant is set to unitandk(T) is an equilib-
rium constant of the reaction.

Following Lifshitz?® we assume the free energy of the |t is worth noticing that the structural contributions to
system described above to be a sum of the structural anghe free energy used by Tanaka and Ishida both in Ref. 19
energetic contributions: based on the Stockmayer gelation méleind in Ref. 20

F(p1,p2)INT=Fgu(p1,p2)+F*(p1,p2), ) c!aiming tq follow tr_\e Flory model diffgr from ours. This

) difference is due to important inaccuracies made in Refs. 19
whereV is the total volume of the system apg, andp, are  and 20 under estimation of the free energy of the infinite
the concentrationgnumber densitigsof the monomers\s,  ¢yster of the thermoreversible bon@ee discussion in Refs.
andBy,, respectively. 15 and 26 and, in more detail, in Ref. 2&his inaccuracy

The contribution of usualvan der Waalsvolume inter-  leads to some unphysical singularities of the struct(aadl,
actions into free energy we assume to be consistent with thiderefore, totgl free energy at the sol-gel threshold contra-
Flory—Huggins theory: dictory to the conventional Flory approach used, for ex-

ample, in Refs. 3—7, 9-13, 15-18, and.26

F==Tx¢1¢2, ®) In the next section, we will give a full classification of
where the volume fractiong;=p;v obey the incompress- phase diagrams, possible in the system with free energy de-
ibility condition scribed by Eqgs(2), (3) and(9), (10).

fokpo=T"1/[(1-T1)(1-17)]. (10
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Ill. PHASE DIAGRAM CLASSIFICATION It is well knowrf® that there are four possible types of
the special points on the phase diagrams of two-component
incompressible systems: critical points, triple ones, those of

Before we start the phase diagram classification itself, ilequal concentration, and points of the phase transitions in
is worth expressing the total free energy of the system as gure components. One can easily see that, within the chosen
function of one of the monomers’ volume fraction. SUbStitUt-approximation, in systems with a|ternating association there
ing Egs.(3) and(10) into Eq.(2) and changingp, into ¢ and  are no points of the latter two types. Indeed, these two pecu-
¢ into 1— ¢, one gets the following final expressions for the |iarities are characterized by the coexistence of two phases
free energy of a system with alternating association and fofith equal composition. On the other hand, E(<) deter-

A. General remarks

the mass action laws, respectively: mine the conversions as some single-value functions of the
volume fractiong. Therefore, the free energy of the systems
F(N,T,¢)/NT : . ; . :
under consideration also is a single-value function ¢gf
=f(p)=oIn(f,! p/e)+(1—p)In[f,l(1—¢p)/e] which means that there is only one phase for every fixed

value of ¢. Thus, the phase diagrams of the systems with

i1 In(1-T) +f2(1-¢)In(1-T>) alternating association should be classified with respect to

T+ fo(1— )12+ 1- ), 11 the critical and triple points onf
(14Tt fo(1= T2)/24 x4 (1= ) y We start with consideration of the critical points. By
I, definition, the critical points are determined by the following
Kfl¢:(1—F1)(1—F2)’ equations?
r, (12 FFIa¢?=0, FFlag=0. (16

kfo(l=¢)= —F—F——F—,
N N e first of these equations defines the spinodal #g
(1-T')(1-T) The first of th defines th dal dog T
where the dimensionless association constank/v is in-  On the phase diagram and the second one, which can be

troduced. rewritten as (9¢Sp/&T)‘1=0, specifies the location of the
The relationship between the volume fraction and con<ritical point along the spinodal line. Substituting free energy
versions follows from Eqs(4) and (10): (12) into the first equation of Eqg16) it is easy to get the
spinodal condition as follows:
¢ ol
v 98" d=g) X+ K(1-T(L-Ty)
According to formulag11) and (12) the free energy of the
spatially homogeneous system with alternating association 2f1f2+ffl“1+f§1“2
can be written as follows: X 1-T,1, =0, (17)

F(T.V.¢)=VF(T.4). (14 where the first two terms on the right-hand side correspond
In case of a mu|tiphas(gay,n-phase system the free energy to the Spinodal of the incompressible blend of two Simple

is to be written as follows: lattice liquids and the last one does to the association itself.
One can rewrite Eq.17) in terms of an effectivey parameter
. as follows:
F(T.V, )=V ming, > xiF(T,), (149
" PF 1

wherex; =V;/V andV; are the relative and absolute volumes 342~ $(1— ) 2Xer=0,

of theith phase and; the volume fraction oA monomers (179

in the ith phase. The equilibrium values ¢X;,¢;} corre- Xei=x— k(1=T1)(1-T)

spond to the minimum of the functiail4ag with the values

2 2
¢ andT fixed and with due regard to the auxiliary conditions 21T+ il + 150

2(1_F1F2)

n n
izl X;j=1, izl Xihi = ¢. (15 An important feature of this effective parameteyy is
that, unlike the initial oney, it substantially depends on the

Thus, already at this stage of the investigation, one canolume fraction since conversiodsare related to the vol-
find the equilibrium values of component densities in each oume fraction by the mass action lagi®). Note that this fact
the phases for any given values ofx,¢} and, therefore, was overlooked in Ref. 21 where the phase behavior of the
plot a phase diagram of a system with some given depersystem was assumed to be governed by a concentration-
dencesk(T) and x(T). However, we address here a more independeni{renormalized, thoughFlory—Huggins param-
ambitious goal—the problem of a full topological classifica- eter, which led the authors to some unphysical results like
tion of the phase diagrams possible in the system. Thereforepomplete miscibility of the components at low temperatures.
to proceed further we should first analyze what peculiarites  The straightforward, even though somewhat cumber-
of phase diagrams are possible in the system under consideme, calculation of the third derivative of the free energy
eration. results in the following expression:
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or 129 + Pal [(f FO[F1Fp(3+T 4T )+ Fy(fr—F )T 4+ fo(fo— F1)T,]
W ¢2(1_¢)2 f1f2(1_¢)(1_F1F2)2 2 1 112 112 IR 2)11 2012 1)L 2
2-T',—-T '\, «k(1-T')(1-T5)
_ 2 2 112 1l 2 1 2 B
+(F Ty —f00)(2F f+ T +1515) 1-T.T, } (1= (1—F1F2)3 {2f,f,(I'1—T5)
+13[(1-T2) = T5(1-Ty)]-fi[(1-T1) - TH1-T2) T}, (18)

where the first term determines location of the critical point of a lattice blend as is seen by Bettihig=0. The parameters
¢, k, Iy, appearing in Eq(18) are to obey the mass action lawk2). Thus, only two of these four variables are really
independent. To retain the symmetry of the system, we exclgd@ad «, which enables us to rewrite the second equation of
Egs.(16) in terms of the conversions only:

(FITE=303)(1—T11) 3 (I ) 2= (F1T 1+ 0 ) {2 f1f (T —Tp) + 5[ (1-Tp) —T'5(1-T1) - (1-Ty)
_Fi(l_rz)]}"'(fz_fl)(l_Flrz)[f1f2(3+rlrz)+f1(f1_f2)F1

+Eo(fo—F )T o]+ (F, T — F,15) (2= T —Tp)(2 f o+ f3T +f3T5). (19

Unlike the critical points, the triple ones in the system points, the values of Ir and y corresponding to any of such
under consideration can be found only numerically. Theyintersection satisfy both Eq€l6) and(21), which means that
correspond to the situation where there is a tangent to thehere is a critical point on the phase diagram of the system
free energy(11) curve having three common points with it: under consideration and the values okland y at this point
i.e., the triple points are the solutiofig,,¢,,$5,T} of the  are those defined by the intersection. Therewith the number
system of the intersections is just the number of all critical points on
F(T.dy)—F(T.by) the phase diagram. On the contrary, if there are no intersec-

L 2 tions of these curves, then simultaneous equati@6s and

$1— ¢ (21) have no physical solution for the given system, and,
_F(T,¢2)—F(T,3) IF(T,9) therefore, the corresponding phase diagram has no critical
b2~ 3 d¢

points. The same considerations are valid for intersections of
the line of the triple point$20) and straight lin€21), which
completely define location of the triple points.

(iv) The phase diagrams of two systems with different
AS andE are said to belong to the same topological class if
one can continuously transform the corresponding straight

(200 Jines (21) one into another conserving the number of inter-

Having found the lines of triple and critical points, a Sections between the straight line and the lines of critical and
further phase diagrams classification is to be done accordingiPle points throughout all the transformation. Obviously,
to the strategy developed in Refs. 12, 17, and 18. This strafle€ phase diagrams of these two systems also can be con-

¢’:¢/’1

_IF(T.¢)|

OF(T,9)
19¢ ‘¢:¢3'

d¢

¢:¢2

egy can briefly be formulated as follows:

verted one into another by a continuous transformation,

(i) The lines of critical and triple points are plotted on Which conserves the number of critical and triple points.

the (Ink,x) plane.
(ii) The temperature dependences of khend y param-

(v) The plane of parameterd §,E) is separated into the
regions in any of which some particular topological type of

eters are assumed to be as simple as possible, which med?f§ase diagrame.e., some particular set of critical and triple

the Arrhenius dependence= ko exp(—e/T) for the associa-
tion constant andy=0/2T dependence for the Flory—

pointg is realized. Such a “map” is referred to as the phase
portrait of the system.

Huggins parameter. Then the 4fy) dependence is linear: (vi) Atypical phase diagram is presented for each region
of the phase portrait.

In k(x)=AS—Ey, (21) The resulting phase diagram classification obtained via
whereAS=In x, and E=2¢/® are the bond formation en- the procedure described above depends on the fact whether
tropy and reduced energy, respectively. Thus, any temperdbe system under consideration is symmetficf,) or not.
ture change in a system with given nature of the associatioR© We consider these two cases separately, starting with more
corresponds to a movement on tha k,y) plane along a Simple symmetric case.
straight line whose slope and free coefficient are specific just
for this kind of association. The straight lin@1) is also  B. Symmetric systems
plotted on the(ln ,y) plane.

(iii ) The numbers of intersections of the straight l{@&)
with the lines of critical (16) and triple (20) points are If f,=f,=f, some of the terms in Eq19) cancel each
counted. If the ling21) intersects, say, the line of the critical other so that it takes the form

1. Critical points
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(F=T){(I1+)(1-T405)° e 4u?
C(1+w[(1—u)®—fu*(3—u)]—4fu?’
—fIAT)2B-T (I +To)+41}=0. (22 (ol = iuE =] o8
One of the roots of this equation is [(1-u)®~fu’(3-w]* u
P(l-¢)= 16F20° = b2
F1=F2. (23)
As could be easily checked using E@.3), in symmetric ul, 1*xy1—4u/b?
systems the equal conversions occur only for the symmetric ~ #= b2 F_1: - 2
blend with ¢,= ¢,=1/2. Thus, in the symmetric systems
there is a symmetric critical point witthb=1/2. Substituting Equations(24) and (28) define parametrically the lines

Eg. (23) into Egs.(17) and (12) we get the Flory—Huggins of critical points on the(In x,x) plane. These lines for the
parameter and association constant in this critical point:  different values off are shown in Fig. 2. The bold and
_ _ _ 2 dashed lines correspond to the symmetric critical points
X=2+210/(1=1), w=2T7/H(1-T)% (24 given by Eq.(24) and the pairs of asymmetric ones given by
wherel'=1", =T, is the conversion in the symmetric critical Eq. (28), respectively. In the limit of Iik——o there is a
point. single (symmetrig critical point with ;=2 as it should be
Other roots of Eq(22) are to satisfy the equation in the case of no association at all. In the limit ofdr: the
(T4 T,)(1-T,T,)3 dashed lines in Fig. 2 have vertical asymptotes whose physi-
1772 102 cal meaning is rather clear. Indeed, in the case of large asso-
=f(Tal)?[(3—T1Ip) (T + 1) +4]. (25  ciation constant almost all bonds have reacted and, therefore,
the system under study could be considered as a mixture of
This equation is symmetric with regard to the replacementhe pureA component and\B associatesif ¢<1/2) or that
I'y<T,. Therefore, its rootgif any) are pairs of critical  of the pureB component and\B associatesif ¢>1/2). In
points, the conversions and volume fractions in which ObE)ény of these two regions we are expecting a usual phase

the relations diagram with one critical point defined by some renormal-
1—‘(11):1—~(22)' F(zl):F(12), pD=1— @), (26) izeq value ofy. It follows from Eq.(28) that the value of this
X IS
where the upper coefficient enumerates the critical points in
the pair. The roots of Eq25) are parametrized by substitut- B ,(1+(1- fyu?)
ingb=T,+T,, u=IT5: X-=(1+1..) 402 : (299
) 4fu? g b+ bZ—4u . (27) Whereu. is the lower positive root of the equation

T (1-uw)i—fuX3-u)’ 2

V3 f12 P
Substituting these solutions into the spinodal equation [(17 )" = T (3~ L) J (1 U] = AT (295

and mass action lawl2) one gets the expressions for the For instancey =3+ 2v2 in the case of =1.
characteristics of the system in the critical points under con- Finally, it fgilows from Eq.(24) that the branch of criti-

sideration: cal points line corresponding to largehas a logarithmlike
21_|_(1_f)u2 4f2u2(1+(1—f)u?) form in the limit y—o: In x~In x. Let us mention also a
X= 02 = [(1— w3 fu2(3—wJ2’ branching point on the line of critical points, where the pair
of critical points first occurs, branching off the critical points
with ¢=1/2. It is easy to see that for the values of parameters
corresponding to this branching point and &+ 1/2 the first
nonzero derivative of the free energy déF/d¢’ (all even
derivatives of the free energy equal zero due to the symmetry
of the system
It is important to emphasize that in the Flory approxima-
tion we use here the arrangement of critical points lines de-
pends only quantitatively on the functionality of the mono-
mers. Therefore, some particular topological types of the
phase diagrams do or do not exist independently on the value
of f. For example, the topological types of phase diagrams
of the systems withi =1, where only dimers can appear, are
the same as in the system witk 3, where an infinite cluster
! . . . . . of bonds may arise. The only difference between the systems
0 4 8 X 12 with different functionalities is in the particular values of the
FIG. 2. The lines of critical points in the symmetric system fbr reduced energy and entropy of the bond necessary for occur-

=1, 2,3, 4. The solid lines correspond to the critical points with0.5: the ~ f€Nce O_f this or that type of phase_ diag_rams. Due to this
dashed lines correspond to the pairs of asymmetric critical points. peculiarity of the system under consideration, the phase por-
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4-
Ink 2
AS

2-
0-
0- -2-
4

24

0 5 10 15 X 6

FIG. 3. The lines of critical and triple points for the symmetric system with
f=23. The thick line is the line of triple points, thin lines the lines of critical
points. The straight line shows an example of a section, which includes th
triple point[the corresponding phase diagram is shown in Fig)]5

FIG. 4. The phase portrait of the symmetric system With3. The numbers
are marking the lines of the phase porti@itr their meaning see the main
?ext): the letters are marking the regions. For any region markeddyte
example of corresponding phase diagram is given in Fig. 5

traits of all symmetric systems with alternating associationlines (21) with some particular free coefficie¥S and the
are topologically identical. For definiteness, in what follows slopese= + ¢ always differ by 1 if¢>0 is small enough.
we choosef =3. Every region on the phase portrait constructed in such a
way corresponds to a certain particular topological type of
the phase diagrams. To describe the latter more precisely we
need some additional classification of critical points. By defi-
Let us now discuss whether triple points may be ob-nition, any critical pointC is such a point é¢,T¢) that for
served in the system. One can easily see that some of the>T. (or T<T.) the system becomes unstable with the
phase diagramgfor example, the one corresponding to the respect to separating into two phases with almost equal com-
straight line in Fig. 3have a pair of high-temperature critical positions (¢;— ¢,]—0 whenT—T¢). But some of such
points. It is natural to expect that at least some of these phasgitical points (¢, Tc) may (due to presence of some other
diagrams should include also a triple point between the criticritical poind already belong to the region unstable with re-
cal points mentioned above. The volume fraction corre-spect to separating into phases with finite difference of com-
sponding to this triple point should obviously ke=1/2 due  positions. We will refer to such critical points as the meta-
to the symmetry of the system. To find the line of triple stable ones. The curves on the phase portrait which separate
points (the bold line in Fig. 3 we numerically solved Eqg. the regions with different sets of such metastable critical
(20). In the low-temperaturghigh-x) limit this line has an  points (say, with different topology of spinodal linedut
asymptote with the slope (B ~!=1/6. This asymptote has a with the same set of the thermodynamically stable peculiari-
rather simple physical meaning: the highly intraconnectedies of phase diagram@®r, say, with the same topology of
phase with¢=1/2 is thermodynamically stable if the asso- binodal lineg are given by dashed lines in Fig. 4.
ciation energy per one molecule is larger than the Flory—

2. Triple points

Huggins one: 4. Phase diagrams
ef/2>0/2—E=¢/20>(2f)"". (30 Let us now consider all the types of phase diagrams
_ corresponding to the different regions on the phase portrait.
3. Phase portrait Even though botlt andAS are constant parameters for any

The next step in the phase diagrams classification is t6€@l System, we use the expressions like “increase of
construct the phase portrait of the system on th&,g)  rather widely with the purpose to describe evolution of the
plane(the latter parameters being the dimensionless entropglobal phase behavior when varying the systems with differ-
and energy of the bond: i.e., free term and slope of an arbi€ntE andAS.
trary straight line on théln «,x) plane. The aforementioned
phase portrait given by Fig. 4 includé€s the lines corre- 5. Low association at any temperature
spondlng to the set of tangent I|ne_s to th_g lines _of critical and This takes place iAS is sufficiently less than zero and
trlpledpomts(cr:]urvis 1fa?? 2 on F'g_')’4('t'1) thehllnhe cborre—h. E is positive. The phase diagrams of this type are shown
sponding to the sheat of lines passing through the branchingy, g 53), which is similar to the trivial phase diagram of

point in Fig. 2 (line 3 in Fig. 4, and (iii) vertical linesE a nonassociating two-component blend
=0 andE= —1/6 (lines 4 and 5 in the figujeseparating the '

regions with different number of low-temperatuieigh-y)
intersections between the straight lin@4) and the lines of
critical and triple points, respectivelyThe number of inter- As E passes zero the association begins to increase with
sections between the line of critical points and the straighthe decrease of temperature Hfstays higher thar-1/6, a

6. High association at low temperature
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(a) (b) (c)
0.1
0.1 0.11
T T T FIG. 5. The examples of phase dia-
grams of the symmetric systems with
f=3. The temperature is measured
in the units of ! (i.e., is renor-
malized by the factor #: thick lines
095 05 ¢ 1.0 0'co.o " " 05 ¢ 1.0 0% 05 ¢ 1.0 correspond to the binodals and thin
lines to the spinodals(a) E=0.1,
(d) (e) (f In ko=0; (b) E=—0.15, Inky=—1.3;

(0) E=—0.25, Ink,=—2; (d) E=0.1,

] T Inkp=2; (6) E=—0.1, Ink,=0; (f)
T 01 T E=-0.1, Inky=1; (g) E=-0.25,
’ 0.1 In k,=0; (h) E=—0.25, Inky=—1.6;
(i) E=—-0.26, Ink,=—-1.8; (j)) E
=-0.45, Inkyg=—2.99; (k) E=—0.7,
In k,=—5.1. The inset shows an en-
larged picture of the area within the
0.0, 0.0 0.0

00 05 ¢ 1,0 0.0 05 ¢ 1.0 "0.0 05 ¢ 1.0 dashed rectangle.

(9) (h) (i)

metastable critical point arises on the phase diagisee ichiometric compositionBSC) is thermodynamically more
Fig. 5(b)]. In this case the association constant tends to infavorable then any other blends. Now, if the energy of the
finity at low temperatures but the conditigB0) is still not  bondE becomes negative, in addition to the aforementioned
valid. Thus, a homogeneous phase with nearly stoichiometribigh-temperature triple point a metastable PSC similar to
composition(i.e., close top=1/2) may exist below such a that on Fig. %b) appears on the phase diagrdsee Fig.
critical point. It is important to stress that this phase is still5(e)]. If E decreases furthetbut still E>—1/6), the two
metastable for any temperature lower thgy,. In the sys- metastable critical points on the phase diagram may merge
tems withE< — 1/6 the low-temperature phase with stoichio- and so the BSC turns to be at least metastable at all tempera-
metric composition (PSQ becomes thermodynamically ture rangegsee Fig. &)].

stable at sufficiently low temperaturds<T, <T.; and a

so-called peritecti¢low-temperature triplepoin?® appears g High association at any temperature

on the phase diagrafsee Fig. )] The further evolution of phase diagrams with the dimin-

ishing of E depends very much on the value®$. If ASis
sufficiently large(i.e., when association is very strong at all
This occurs if the high-temperature limit of the associa-temperatures the BSC becomes thermodynamically stable
tion constantAS, is large enough. IE>0 (i.e., association as soon as the bond energy turns lower then the critical value
decreases with the increase of temperatute correspond- of —1/6. The corresponding phase diagram is shown on Fig.
ing phase diagram contains a triple pdis¢e Fig. &d)]. The  5(g). As consistent with the discussion above, in the case of
rise of this triple point is due to the fact that at high tempera-high association the phase diagram is a combination of the
ture, when association is strong, the blend with nearly stophase diagrams of two nonassociating systémsAB and

7. High association at high temperature
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AB+B. Now, if the entropy of the bondS is not large

enough, the crossing of critical vallee= —1/6 leads to ap- 44
pearance of low-temperature stable FSC, which can be ac- Ink
companied by both a pair of metastable critical points and a
continuous corridor of metastabiliffrigs. 5h) and 5i), re-
spectively. Note that while energf is decreasingwith AS

24

staying constanf the phase diagram of Fig(l9 first pro- 01
ceeds into one shown at Fig(iband, with further diminish-
ing, into the phase diagram shown at Figg)5 24

Two more topological types of phase diagrams including
the closed immiscibility loopsnay occur if both the entropy
and energy of the bond are negat.ivg aqd large in. absolute '40 10 20 X 20
value (which means that the association is low at high tem-
peratures and increases drastically while temperature deG.6. The lines of critical points of the asymmetric systemsffer 3 and
5(k). The physical reason for these diagrams to appear is as
follows. At high temperatures the association is almost ab-

sent and phase diagrams of Fig$j) &and 5k) are almost _ (fi01+1,09)%  fala+ 1ol

similar to that on Fig. &). When temperature decreases as- X fofoI'qI5 1-1'4I5

sociation becomes more and more strong and therefore the

mixture stabilizes. Depending on the values of parameters, X(2+ Tyt /o4 Dot lfy), (31D
such stabilization may result to appearance of the symmetric foI,

lower critical solution temperaturd.CST) [Fig. 5(j)] or a p= Fl 4 f,0, (319
pair of asymmetric LCST separated by the triple point of

stoichiometric concentratiofFig. 5(k)]. At last, at the low Substitution  of  the  spinodal  conversions

temperatures the association is very strong and thereforei(x.x).I'2(«,x) defined by Eqs(31) into Eqg. (19) gives
phase diagrams of Figs(j5and 5Kk) are similar to one given the lines of critical points on the (lay) plane. These lines
by Fig. 5g). are plotted on the Fig. 6 for the case 6{=3, f,

Summarizing the results of this section, we found severi1,2,3,4. One can see that in the casefo¥f, these
different topological types of phase diagrams possible irfurves have two disconnected branches. The first, monoto-
symmetric systems with alternating association at differenfious high-temperaturéow-y) one approaches the trivial
entropy and energy of the bond. The number of topologicallyeritical point =2, ¢=0. in the limit of k—0. When« in-
different types of phase diagrams increases to 11 if the met&/€ases, the critical value gfalso increases and the critical
stable critical points are included. The main trend governingg@mpositiong, shifts toward the pure low-functional com-
all the variety of these phase diagrams is an associatiorRonent(i.e., increases fof,=1,2 and decreases fé;=4).
induced increase in the thermodynamic stability of BSC ~ In the limit of high associatiork— almost all bonds have

In the next section we analyze the phase behavior of théeacted and the high-temperature branch of critical points
asymmetric systems with alternating association. Naturallyiine approaches the critical point of the mixture of the plre
we expect in this case even higher diversity of phase diacomponent and stableH associated, andH being the low-
grams as, on the one hand, the main physical trend being tifd high-functional components, respectively. The second,
rise of thermodynamic stability of the BSC is retained low-temperature branch, in turn, consists of two curves sepa-
and, on the other hand, the special symmetry of the phadé@ted by the cusp. The low-curve approaches in the limit of

removed. ciates and puréd component. Note that in the symmetric

case the aforementionédd/H andLH/L systems are physi-
cally identical and therefore two lines of critical points with
vertical asymptotes degenerate in this case into one
“double” line as discussed in the previous section. The
high-y branch of the critical points line once again has a
1. Critical points logarithmlike form in the limity—o:In k~In . In this limit
the critical compositionp,. is equal to the stoichiometric one

Let us apply the procedure of the phase diagrams class'bst: f,/(f,+f,) and it shifts towards the purid compo-
fication to the general case of asymmetric systems Wjth nent(i.e., decreases fdr=1, 2 and increases fdép=4) if x
# f,. Using the mass action law$2) and the spinodal equa- s finite. Thus, the region of volume fractions between

tion (17) it is easy to express the spinodal values of they—0.5 andg,, never includes any critical points.
association constant, Flory—Huggins parameter and volume

fraction as functions of conversions:

_ fal'y 1ol (313 In Fig. 7 the lines of critica(thin) and triple(thick) lines
f1fo(1-T)(1-T) for this system are shown. Similarly to the case of symmetric

C. Asymmetric systems

2. Triple points

K
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FIG. 7. The lines of criticalthin line) and triple (thick line) points of the
asymmetric system withi; =2, f,=3.
-8

-1.5

systems the line of triple points has an asymptote whiclf!G. 8. Phase portrait of the asymmetri, € 2,f,=3) system with alter-

. . -1 . . . nating association. The area close to the line 4 includes plenty of minor
slope in this case equald,(tf;) ~, which is the evident details. To show them better we plotted the linA$E)=(In «y);(E)

generalization of Eq(30). Let us stress also an important —(in «,),(E), where (Inxo),(E) is anith line of phase portrait, in the inset.
difference from the symmetric case: now the line of triple The numbers are marking the lines of the phase porffaittheir meaning

points starts in a poinT rather than in the cusg of the see the ma‘in" text the letters are marking the region§. For any 'regio_n
critical points curve. The case is that in the symmetric casggrkge(g) by " the example of corresponding phase diagram is given in
only pairs of critical points withequal critical temperature o

may exist and therefore theshould be a triple point be-

tween them. But in the asymmetric case the equality of criti- )

cal temperatures is not required and therefore the phase did: Fhase diagrams

grams may include not only “critical-point—triple-point— In the case ofow association at any temperaturé.e.,
critical-point,” but also “critical-point—metastable-critical- for positive E and negativeAS with sufficiently large
point” combination. |AS|—we get a trivial phase diagram with one critical point

Evidently, the distance between two branches of thgFig. 9(a)]. If the association slowly increases with the de-
critical line in the limit x—o as well as that between the crease of temperaturé.e., if —0.2<E<0), similarly to the
pointsC andT increases with increase of the differeriée  symmetric case, a metastable phase with nearly stoichio-
- f1| but the disposition of the critical and triple points lines metric concentration arisgsee Fig. %)]. On the contrary,
stays the same. Thus, similarly to discussion of the symmethe highA S behavior of phase diagrams differs from that of
ric systems above, one can expect that the topology of thghe case of symmetric systems. The difference is that before
resulting phase portraits of the asymmetric systems will nothe eutectic point arises on the phase diagrams there is also a
depend on the specific values bf,f,. Due to this reason, regionc where the phase diagrams have two metastable criti-
we have chosen in what follows; =2 and f,=3 as the cal points[Fig. 9c)]. The aforementioned peculiarities—the
lowest values of functionalities for which infinite cluster may low- and high-temperature metastable critical points—may
arise in the system. arise simultaneouslyFig. 9d)] or even merge giving rise to
a corridor of metastability of the BS{Zee Fig. %)].

Let us now consider the regions of the phase portrait
corresponding t&> — 0.2 andA S large enough. In this case
the association at high temperature is higimd it either de-

In Fig. 8 the corresponding phase portrait is shown. ltcreasegif E>0) or slowly increase§if —0.2<E<0) with
includes the following six curvesi) the curves correspond- the decrease of temperatureElis positive, we have a phase
ing to the set of tangents to the lines of the critical and triplediagram with eutectic poinftFig. 9(f)]. When the bond en-
points(curves 1 and 2 in the figurg(ii) those corresponding ergy becomes negative, a metastable PSC alfSgs Ag)],
to the sheaf of the straight lines drawn through the cusp ofvhich accrete with a high-temperature metastable region
the critical points line and the intersection between the critcalvith a further decrease @& [see Fig. #)].
and triple point lineqlines 3 and 4, respectivelyand (iii ) Phase diagrams with<<—0.2 correspond thigh asso-
the vertical lineE=0 andE=—0.2= —(f,+f,) ! (lines5 ciation at low temperaturesThe main peculiarity of all this
and 6 which separate the regions with different numbers ofdiagrams, similarly to the symmetric case, is the thermody-
low-temperature critical and triple points. namic stability of a BSC in the low-temperature region. If

Similarly to the symmetric case, we separate the regionthe bond entropy, and, therefore, association at high tempera-
with different binodal topology by the solid curves, and ture, is sufficiently small, the phase diagram differs from that
those, which differ only in the metastable peculiarities ofgiven by Fig. 9a) only by the presence of low-temperature
phase diagrams, by the dashed ones. PSC[see Fig. 9)]. In the regionsj), (k), (1), which are close

3. Phase portrait
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to the intersection of the lines 4 and 6 on the phase portraitable critical point and MCHN) the appearance of a pair of
(see Fig. 8 there are three more types of the phase dianew high-temperature metastable critical poiffesy. 9k),
grams. These phase diagrams differ from each other antiree metastable critical poidtsand the combination of
from that shown on Fig. ® by the number of metastable these two peculiaritie$Fig. A1), three metastable critical
critical points and/or the presence of a metastable corridor gboints and MCM.

miscibility (MCM). Their appearance is due to merging of If ASis large enough ang#< —0.2 (i.e., association is
low- and high-temperature spinoddlBig. 9j), one meta- high at all temperatures the phase diagram takes the form
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shown on Fig. 8m). As expected, it is just a combination case of asymmetric systems. Nontrivial phase behavior in
of two trivial [similar to Fig. 9a)] phase diagrams of systems with alternating association is not exhausted by
two-component system&+AB and AB+B. When AS  closed immiscibility loops, but includes also triple points
decreases, one of the immiscibility regions on FigmP (eutectics and pertectigsnetastable critical points, and even
(which with the predominance of the low-functional compo- completely metastable phases.

neny increases in size and acquires a specific hoodlike All these elements are far from being typical for liquid—
form (somewhat similar phase diagrams for one-componeniquid phase diagrams but often observed in the liquid—solid
systems are found in Refs. 11 and).1&his deformation and solid—solid phase diagratAgin particular, for sulfide,

of the immiscibility region can entail two new peculiarities oxide, and silicate systems, where the cation—anion interac-
of phase diagrams. First, a pair of metastable critications can be roughly modeled as forming of ionic bonds
points may arise at the hoodlike spinodgfig. An)], between the otherwise thermodynamically incompatible
and second, the upper part of the hood may break away fronions). We consider this fact as a qualitative confirmation of
the lower part, giving rise to a phase diagram withl@ased our theory because the difference between the solid and lig-
immiscibility loop [Fig. 9o)]. This phase diagram uid states is beyond the accuracy of the Flory approximation
corresponds to the situation when the straight (@2® inter-  to which we restricted ourselves in this work.

sects three times the tangentlike lgweritical points curve Indeed, this approximation does not allow for influence
in Fig. 7. of some additional correlations due to cyclizati@e., intra-

The last two types of phase diagrams shown in Figg). 9 cluster bonding intracluster and intercluster van der Waals
and 9q) correspond tEE< — 0.2 and intermediate values of interactions, and the angle-dependent interactions between
AS. The reason for their appearence is that there are threbe bonds adjacent to the same monomer. Some of these
different ways to transform a phase diagram with peritecticadditional correlations may lead to the occurrence of a
point [Figs. 9i)—9()] into that with two immiscibility re- crystal ordering in the systems under consideration.
gions[Figs. 9m) and 9n)] via increasingA S: Despite many attempts to overcome this short-

(i) If |E| is sufficiently low(but not lower then 0.2 one  coming;®7131517.26.33-3he rgle of these correlations is
starts with the phase diagram of Figl)9in which an eutec- still far from being clear. Thus, there are two reasons in favor
tic point appears with the increase AfS [see Fig. #)]. of using here the Flory approximation elaborated earlier
With an increase ofAS the eutectic and peritectic points by one of us'® as well as other authoPs:'%S First,
approach each other until, eventually, they merge, giving ris¢his approximation is comparatively simple, and it is
to the phase diagram type shown at Fign® this feature which enabled us to carry out the full topological

(i) If |E| is a bit larger, the peritectic type phase diagramclassification of the phase diagrams of the systems with
[either of Fig. 9j) or Fig. Al) type] just transforms into that alternating association. Second, the Flory approach is
with two immiscibility regions by adhesion of a triple point the most commonly used one in the scientific community,
to the outer binodal line. As a result, the phase diagramsvhich enables the reader to concentrate on the main result
shown in Figs. @m) and 9n) we discussed above appear. of our consideration rather than query validity of a new

(iii) If |E| is large enough, the inner and outer binodalsapproximation.
merge at a temperature lower than that of the triple point, And this most important result of our consideration
giving rise to the phase diagram shown in Figq)9 The is that the phase behavior of the associating systems is
further increase of the bond entropy leads to transformatiomot only governed by the qualitative characteristics of

of this phase diagram into that shown in FignQ association(i.e., is it self- or alternating association, etc.
Thus, we listed the topological types of phase diagram$ut also depends drastically on the quantitative characteris-
corresponding to all regions on the phase portrait. tics of the bonds. More precisely, to predict the phase behav-
ior of an associating system one should not only define its

IV. CONCLUSIONS general characteristics(say, the type of association

and monomers functionalitigsbut also measure the particu-
ar values of the entropy and energy of the bond and specify

association-induced increase in the thermodynamic stability wrgchl retgr;:_o n of thetphatlﬁe portrait (.jo tthese values cor;e;j
of blends of stoichiometric composition and differs substan- pond. In this respect, othér approximations are expecte

H 1
tially from that of the systems with self-association, which istohgw_e fonly dso.n;](.a nﬁwFTubtle detéﬂ S as ccémgareld t?]
rather dependent on the fact if an infinite cluster of labile'VNat IS found within the Flory approximation. Evidently, the

bonds occurs in the systethAs consistent with the full essential role of the quantitative characteristics of the bonds

\Hill remain in the more complex systems whose phase be-

topological classification of the phase diagrams we presenteh . to di | h We beli that f
above within the framework of the conventional Flory ap- avior we suppose 1o discuss elsewnere. We belleve that fur-
er analysis along this vein could result in elaboration of

proach, the phase behavior of the systems with alternating, . - . S
association is rather diverse. We found seven possible top trict quanutatlve theory of hydrophobic and hydrophilic in-
logical types of their phase diagrams, even distinguishinderaCt'onS'

them only with respect to the topologically different bin-

odals. If the metastable critical points are also taken intda‘cm\lOWLEDG'\/IENTS

account, then the number of possible topological types in- We acknowledge financial support of this work by
creases up to 11 in the case of symmetric and up to 17 in thiNTAS, DFG, and RFBRGrant No. mas02-03-06558

Thus, the global phase behavior of two-component sys
tems with alternating association is governed by
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