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Phase diagrams classification of the systems with thermoreversible
alternating association „the Flory approach …

M. V. Thamm and I. Ya. Erukhimovicha)

Physics Department, Moscow State University, Moscow, 119992 Russia

~Received 14 March 2003; accepted 2 May 2003!

We consider incompressible blends off 1- and f 2-functional monomersAf 1
and Bf 2

, capable of
forming thermoreversible bondsAB only between unlike monomers with an equilibrium Arrhenius
association constantk5k0 exp(2«/T). Effects of the parametersf 1 , f 2 , k0 , and« on the global
phase behavior of these systems are analyzed within the conventional Flory approach. An explicit
topological classification of all types of phase diagrams is given via building~i! the phase portraits,
i.e., separation of the plane (lnk0,«) into the regions corresponding to topologically similar phase
diagrams, and~ii ! typical phase diagrams on the~volume fraction;T) plane for all regions of the
phase portraits. The phase behavior of the systems with alternating association is found to be rather
sensitive to the values of the parameters (lnk0,«) and diverse. In particular, seven possible types of
phase diagrams with topologically different binodals are found. Nontrivial phase behavior in the
systems with alternating association includes closed immiscibility loops, triple points, metastable
critical points, and even completely metastable phases. The main trend governing all the variety of
these phase diagrams is an association-induced increase in the thermodynamic stability of blends of
stoichiometric composition. In particular, low-temperature blends of stoichiometric composition
turn out to be thermodynamically stable if (2«/2Q).( f 11 f 2)21, whereQ is the value of theQ
temperature measured in energetic units. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586253#
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I. INTRODUCTION

The theoretical description of two- and multiple
component associating systems is of great theoretical
technological interest. From the practical point of view, th
interest is also based on the fact that most of the solut
studied in biology~water solutions! and earth sciences~sili-
cate melts! belong to the class of associating systems. T
association of the components in these solutions is know
induce different types of interesting phase behavior~closed
immiscibility loops, metastable critical points, eutec
points, and so on!.1 For example, water–water and wate
PEO associations cause the closed immiscibility loops on
phase diagrams of PEO/water systems.2,3 Thus, it is impor-
tant to learn which characteristics of association are resp
sible for one or another type of the phase behavior.

A theory describing the phase behavior of tw
component associating systems should start obviously
some simple reference systems where the main tenden
governing this behavior can be easily investigated. The s
plest example of such a referent system is that where all
associating particles are identical and bear identical fu
tional groupsA capable of forming thermoreversible sat
rated bondA–A with each other. This system, even if
includes also a nonassociation component, can be easil
duced to a one-component associating system and the c
sponding theory is rather well developed.4–18We refer to this
system as that with self-association. The other basic mo

a!Electronic mail: ierukhs@polly.phys.msu.ru
2720021-9606/2003/119(5)/2720/12/$20.00
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system ~actually, the simplest irreducible two-compone
one! is a system where two sorts of identical associat
particles are present, each particle bearing the identical fu
tional groups only~say,Af 1

andBf 2
), and only unlike groups

are capable of forming thermoreversible saturated b
A–B. We refer to this system as that with alternating as
ciation. It is both a good referent system and of cert
physical interest itself, since some systems with dono
acceptor interactions can be treated as those with alterna
association. To our knowledge, the only theoretical studie
this class of associating systems were undertaken in R
19–21. Tanaka and Ishida19,20 have stressed that the mo
characteristic peculiarity of the systems under considera
is the increase in thermodynamic stability of the blends w
stoichiometric concentration. Patlazhan and Ladyzhinsk21

have found a possibility of phase diagrams with closed
miscibility loops in these systems. However, there are so
inaccuracies in the aforementioned papers we address lat
more detail. Thus, even a thorough investigation of the th
modynamics of systems with alternating association in
framework of the most commonly used Flory gelatio
theory22,23 is a still unsolved and interesting objective.

However, in the present paper we address the even m
ambitious problem of topological classification of all pha
diagrams possible in the systems under consideration.
procedure to solve this problem~which is, actually, just a
simplified version of catastrophe theory24! has been applied
to analyze the phase behavior of one-component therm
eversible gels12,17 and the coil-globule transition in the pres
ence of self-associating solvent.18 Here we apply this proce
0 © 2003 American Institute of Physics
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2721J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Phase diagrams of associating systems
dure to a new associating system: i.e., that with alterna
association.

The further presentation is organized as follows: In S
II we describe the model and calculate the free energy of
systems with alternating association. Section III, which pla
the central role in the paper, is devoted to the classificatio
phase diagrams itself. In Sec. III A we explain the gene
procedure of the phase diagrams construction and class
tion and derive the equations defining the critical points
the system. In Secs. III B and III C we present the classifi
tion of phase diagrams—i.e., plot the phase portraits
examples of all topological types of phase diagrams for
symmetric and asymmetric systems, respectively. Fina
Sec. IV includes a brief summary and some discussion of
results of the paper.

II. FREE ENERGY OF THE SYSTEM
WITH ALTERNATING ASSOCIATION

In this paper we consider the system consisting
two types of moleculesAf 1

and Bf 2
, bearing, respectively

f 1 and f 2 functional groupsA and B capable of forming
thermoreversible bond between each other~see Fig. 1!:

A1B ↔
k~T!

AB, ~1!

whereT is the temperature measured in energetic units~the
Boltzmann constant is set to unity! and k(T) is an equilib-
rium constant of the reaction.

Following Lifshitz,25 we assume the free energy of th
system described above to be a sum of the structural
energetic contributions:

F~r1 ,r2!/VT5Fstr~r1 ,r2!1F* ~r1 ,r2!, ~2!

whereV is the total volume of the system andr1 , andr2 are
the concentrations~number densities! of the monomersAf 1

andBf 2
, respectively.

The contribution of usual~van der Waals! volume inter-
actions into free energy we assume to be consistent with
Flory–Huggins theory:

F* 52Txf1f2 , ~3!

where the volume fractionsf i5r iv obey the incompress
ibility condition

FIG. 1. The typical clusters of bonds formed in the system with alterna
association.A andB functional groups are shown by solid and dashed lin
respectively.~a! f 15 f 253 and~b! f 153, f 252.
Downloaded 30 Dec 2011 to 93.180.55.234. Redistribution subject to AIP l
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f11f251 ~4!

and we presume for simplicity that the excluded volumesv
of the components are equal.

Now, to calculate the structural contribution into Eq.~2!
we use, in the present paper, the Flory approach of the th
of thermoreversible gelation.13,15,26 As shown in Ref. 13,
within this approach the structural free energy can be writ
as follows:

Fstr~r1 ,r2!5Fid~r1!1Fid~r2!1min
$ra%

bFchoice
f 1 ~r1 ,ra!

1Fchoice
f 2 ~r2 ,ra!1Fbond~ra!c. ~5!

Here the first two terms are just the free energies of id
gases ofAf 1

(Bf 2
) monomers:

Fid~r!5r ln r/e. ~6!

The third and fourth terms are just the free energies of
redistribuiton of all thef 1r1( f 2r2) functional groups of the
sort A(B) present per unit volume intora reacted andf ir i

2ra unreacted ones:

Fchoice
f i ~r i ,ra!5 f ir i@G i ln G i1~12G i !ln~12G i !#, ~7!

where the conversionsG i5ra / f ir i , i 51,2, are introduced.
The last term in Eq.~5! is the free energy of bond formatio
itself, which is as follows:26

Fbond~r!52r ln gr/e. ~8!

Carrying out the minimization prescribed in Eq.~5! one finds
the final expression for the structural contribution into fr
energy:

Fstr~r1 ,r2!5 (
i 51,2

Fid~r i !1 f ir i@ ln~12G i !1G i /2#,

~9!

where the conversionsG1,2 are related to the densitiesr1,2 by
the mass action law

f 1kr15G2 /@~12G1!~12G2!#,

f 2kr25G1 /@~12G1!~12G2!#. ~10!

It is worth noticing that the structural contributions
the free energy used by Tanaka and Ishida both in Ref.
based on the Stockmayer gelation model27 and in Ref. 20
claiming to follow the Flory model differ from ours. This
difference is due to important inaccuracies made in Refs
and 20 under estimation of the free energy of the infin
cluster of the thermoreversible bonds~see discussion in Refs
15 and 26 and, in more detail, in Ref. 28.! This inaccuracy
leads to some unphysical singularities of the structural~and,
therefore, total! free energy at the sol-gel threshold contr
dictory to the conventional Flory approach used, for e
ample, in Refs. 3–7, 9–13, 15–18, and 26!.

In the next section, we will give a full classification o
phase diagrams, possible in the system with free energy
scribed by Eqs.~2!, ~3! and ~9!, ~10!.
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III. PHASE DIAGRAM CLASSIFICATION

A. General remarks

Before we start the phase diagram classification itsel
is worth expressing the total free energy of the system a
function of one of the monomers’ volume fraction. Substit
ing Eqs.~3! and~10! into Eq.~2! and changingf1 into f and
f2 into 12f, one gets the following final expressions for th
free energy of a system with alternating association and
the mass action laws, respectively:

F~N,T,f!/NT

5 f ~f!5f ln~ f 1!f/e!1~12f!ln@ f 2! ~12f!/e#

1 f 1f ln~12G1!1 f 2~12f!ln~12G2!

1@ f 1fG11 f 2~12f!G2#/21xf~12f!, ~11!

k f 1f5
G2

~12G1!~12G2!
,

~12!

k f 2~12f!5
G1

~12G1!~12G2!
,

where the dimensionless association constantk5k/v is in-
troduced.

The relationship between the volume fraction and c
versions follows from Eqs.~4! and ~10!:

f

12f
5

f 2G2

f 1G1
. ~13!

According to formulas~11! and ~12! the free energy of the
spatially homogeneous system with alternating associa
can be written as follows:

F~T,V,f!5VF~T,f!. ~14!

In case of a multiphase~say,n-phase! system the free energ
is to be written as follows:

F~T,V,f!5V min$f i %(i 51

n

xiF~T,f i !, ~14a!

wherexi5Vi /V andVi are the relative and absolute volum
of the i th phase andf i the volume fraction ofA monomers
in the i th phase. The equilibrium values of$xi ,f i% corre-
spond to the minimum of the function~14a! with the values
f andT fixed and with due regard to the auxiliary conditio

(
i 51

n

xi51, (
i 51

n

xif i5f. ~15!

Thus, already at this stage of the investigation, one
find the equilibrium values of component densities in each
the phases for any given values of$k,x,f% and, therefore,
plot a phase diagram of a system with some given dep
dencesk(T) and x(T). However, we address here a mo
ambitious goal—the problem of a full topological classific
tion of the phase diagrams possible in the system. There
to proceed further we should first analyze what peculiari
of phase diagrams are possible in the system under con
eration.
Downloaded 30 Dec 2011 to 93.180.55.234. Redistribution subject to AIP l
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It is well known29 that there are four possible types
the special points on the phase diagrams of two-compon
incompressible systems: critical points, triple ones, those
equal concentration, and points of the phase transition
pure components. One can easily see that, within the cho
approximation, in systems with alternating association th
are no points of the latter two types. Indeed, these two pe
liarities are characterized by the coexistence of two pha
with equal composition. On the other hand, Eqs.~12! deter-
mine the conversions as some single-value functions of
volume fractionf. Therefore, the free energy of the system
under consideration also is a single-value function off,
which means that there is only one phase for every fix
value of f. Thus, the phase diagrams of the systems w
alternating association should be classified with respec
the critical and triple points only.30

We start with consideration of the critical points. B
definition, the critical points are determined by the followin
equations:29

]2F/]f250, ]3F/]f350. ~16!

The first of these equations defines the spinodal linefsp(T)
on the phase diagram and the second one, which can
rewritten as (]fsp /]T)2150, specifies the location of the
critical point along the spinodal line. Substituting free ener
~11! into the first equation of Eqs.~16! it is easy to get the
spinodal condition as follows:

]2F

]f2 5
1

f~12f!
22x1k~12G1!~12G2!

3
2 f 1f 21 f 1

2G11 f 2
2G2

12G1G2
50, ~17!

where the first two terms on the right-hand side corresp
to the spinodal of the incompressible blend of two simp
lattice liquids and the last one does to the association its
One can rewrite Eq.~17! in terms of an effectivex parameter
as follows:

]2F

]f2 5
1

f~12f!
22xeff50,

~17a!
xeff5x2k~12G1!~12G2!

3
2 f 1f 21 f 1

2G11 f 2
2G2

2~12G1G2!
.

An important feature of this effective parameterxeff is
that, unlike the initial onex, it substantially depends on th
volume fraction since conversionsG are related to the vol-
ume fraction by the mass action laws~12!. Note that this fact
was overlooked in Ref. 21 where the phase behavior of
system was assumed to be governed by a concentra
independent~renormalized, though! Flory–Huggins param-
eter, which led the authors to some unphysical results
complete miscibility of the components at low temperatur

The straightforward, even though somewhat cumb
some, calculation of the third derivative of the free ener
results in the following expression:
icense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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]3F

]f3 52
122f

f2~12f!2 1
G1G2

f 1f 2~12f!~12G1G2!2 H ~ f 22 f 1!@ f 1f 2~31G1G2!1 f 1~ f 12 f 2!G11 f 2~ f 22 f 1!G2#

1~ f 1G12 f 2G2!~2 f 1f 21 f 1
2G11 f 2

2G2!
22G12G2

12G1G2
J 1

G1G2

f~12f!

k~12G1!~12G2!

~12G1G2!3 $2 f 1f 2~G12G2!

1 f 2
2@~12G2!2G2

2~12G1!#2 f 1
2@~12G1!2G1

2~12G2!#%, ~18!

where the first term determines location of the critical point of a lattice blend as is seen by settingG15G250. The parameters
f, k, G1,2 appearing in Eq.~18! are to obey the mass action laws~12!. Thus, only two of these four variables are rea
independent. To retain the symmetry of the system, we excludedf andk, which enables us to rewrite the second equation
Eqs.~16! in terms of the conversions only:

~ f 1
2G1

22 f 2
2G2

2!~12G1G2!3/~G1G2!25~ f 1G11 f 2G2!$2 f 1f 2~G12G2!1 f 2
2@~12G2!2G2

2~12G1!#2 f 1
2@~12G1!

2G1
2~12G2!#%1~ f 22 f 1!~12G1G2!@ f 1f 2~31G1G2!1 f 1~ f 12 f 2!G1

1 f 2~ f 22 f 1!G2#1~ f 1G12 f 2G2!~22G12G2!~2 f 1f 21 f 1
2G11 f 2

2G2!. ~19!
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Unlike the critical points, the triple ones in the syste
under consideration can be found only numerically. Th
correspond to the situation where there is a tangent to
free energy~11! curve having three common points with i
i.e., the triple points are the solutions$f1 ,f2 ,f3 ,T% of the
system

F~T,f1!2F~T,f2!

f12f2

5
F~T,f2!2F~T,f3!

f22f3
5

]F~T,f!

]f U
f5f1

5
]F~T,f!

]f U
f5f2

5
]F~T,f!

]f U
f5f3

.

~20!

Having found the lines of triple and critical points,
further phase diagrams classification is to be done accor
to the strategy developed in Refs. 12, 17, and 18. This s
egy can briefly be formulated as follows:

~i! The lines of critical and triple points are plotted o
the (lnk,x) plane.

~ii ! The temperature dependences of thek andx param-
eters are assumed to be as simple as possible, which m
the Arrhenius dependencek5k0 exp(2«/T) for the associa-
tion constant andx5Q/2T dependence for the Flory–
Huggins parameter. Then the lnk~x! dependence is linear:

ln k~x!5DS2Ex, ~21!

whereDS5 ln k0 and E52«/Q are the bond formation en
tropy and reduced energy, respectively. Thus, any temp
ture change in a system with given nature of the associa
corresponds to a movement on the~ln k,x! plane along a
straight line whose slope and free coefficient are specific
for this kind of association. The straight line~21! is also
plotted on the~ln k,x! plane.

~iii ! The numbers of intersections of the straight line~21!
with the lines of critical ~16! and triple ~20! points are
counted. If the line~21! intersects, say, the line of the critica
Downloaded 30 Dec 2011 to 93.180.55.234. Redistribution subject to AIP l
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points, the values of lnk andx corresponding to any of suc
intersection satisfy both Eqs.~16! and~21!, which means that
there is a critical point on the phase diagram of the sys
under consideration and the values of lnk andx at this point
are those defined by the intersection. Therewith the num
of the intersections is just the number of all critical points
the phase diagram. On the contrary, if there are no inter
tions of these curves, then simultaneous equations~16! and
~21! have no physical solution for the given system, an
therefore, the corresponding phase diagram has no cri
points. The same considerations are valid for intersection
the line of the triple points~20! and straight line~21!, which
completely define location of the triple points.

~iv! The phase diagrams of two systems with differe
DS andE are said to belong to the same topological clas
one can continuously transform the corresponding stra
lines ~21! one into another conserving the number of inte
sections between the straight line and the lines of critical
triple points throughout all the transformation. Obvious
the phase diagrams of these two systems also can be
verted one into another by a continuous transformati
which conserves the number of critical and triple points.

~v! The plane of parameters (DS,E) is separated into the
regions in any of which some particular topological type
phase diagrams~i.e., some particular set of critical and tripl
points! is realized. Such a ‘‘map’’ is referred to as the pha
portrait of the system.

~vi! A typical phase diagram is presented for each reg
of the phase portrait.

The resulting phase diagram classification obtained
the procedure described above depends on the fact whe
the system under consideration is symmetric (f 15 f 2) or not.
So we consider these two cases separately, starting with m
simple symmetric case.

B. Symmetric systems

1. Critical points

If f 15 f 25 f , some of the terms in Eq.~19! cancel each
other so that it takes the form
icense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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~G12G2!$~G11G2!~12G1G2!3

2 f ~G1G2!2@~32G1G2!~G11G2!14#%50. ~22!

One of the roots of this equation is

G15G2 . ~23!

As could be easily checked using Eq.~13!, in symmetric
systems the equal conversions occur only for the symme
blend with f15f251/2. Thus, in the symmetric system
there is a symmetric critical point withf51/2. Substituting
Eq. ~23! into Eqs.~17! and ~12! we get the Flory–Huggins
parameter and association constant in this critical point:

x5212 f G/~12G!, k52G/ f ~12G!2, ~24!

whereG5G15G2 is the conversion in the symmetric critica
point.

Other roots of Eq.~22! are to satisfy the equation

~G11G2!~12G1G2!3

5 f ~G1G2!2@~32G1G2!~G11G2!14#. ~25!

This equation is symmetric with regard to the replacem
G1↔G2 . Therefore, its roots~if any! are pairs of critical
points, the conversions and volume fractions in which ob
the relations

G1
(1)5G2

(2) , G2
(1)5G1

(2) , f (1)512f (2), ~26!

where the upper coefficient enumerates the critical point
the pair. The roots of Eq.~25! are parametrized by substitu
ing b5G11G2 , u5G1G2 :

b5
4 f u2

~12u!32 f u2~32u!
, G1,25

b6Ab224u

2
. ~27!

Substituting these solutions into the spinodal equation~17!
and mass action law~12! one gets the expressions for th
characteristics of the system in the critical points under c
sideration:

x5b2
11~12 f !u2

4u2 5
4 f 2u2~11~12 f !u2!

@~12u!32 f u2~32u!#2 ,

FIG. 2. The lines of critical points in the symmetric system forf
51, 2, 3, 4. The solid lines correspond to the critical points withf50.5: the
dashed lines correspond to the pairs of asymmetric critical points.
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16f 2u3 5
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G1
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16A124u/b2

2
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Equations~24! and ~28! define parametrically the line
of critical points on the~ln k,x! plane. These lines for the
different values off are shown in Fig. 2. The bold an
dashed lines correspond to the symmetric critical poi
given by Eq.~24! and the pairs of asymmetric ones given
Eq. ~28!, respectively. In the limit of lnk→2` there is a
single~symmetric! critical point withxcrit52 as it should be
in the case of no association at all. In the limit of lnk→` the
dashed lines in Fig. 2 have vertical asymptotes whose ph
cal meaning is rather clear. Indeed, in the case of large a
ciation constant almost all bonds have reacted and, there
the system under study could be considered as a mixtur
the pureA component andAB associates~if f,1/2! or that
of the pureB component andAB associates~if f.1/2!. In
any of these two regions we are expecting a usual ph
diagram with one critical point defined by some renorm
ized value ofx. It follows from Eq.~28! that the value of this
x` is

x`5~11u`!2
~11~12 f !u`

2 !

4u`
2 , ~29a!

whereu` is the lower positive root of the equation

@~12u`!32 f u`
2 ~32u`!#~11u`!54 f u`

2 . ~29b!

For instance,xcrit5312& in the case off 51.
Finally, it follows from Eq.~24! that the branch of criti-

cal points line corresponding to largex has a logarithmlike
form in the limit x→`: ln k;ln x. Let us mention also a
branching point on the line of critical points, where the p
of critical points first occurs, branching off the critical poin
with f51/2. It is easy to see that for the values of paramet
corresponding to this branching point and forf51/2 the first
nonzero derivative of the free energy is]7F/]f7 ~all even
derivatives of the free energy equal zero due to the symm
of the system!.

It is important to emphasize that in the Flory approxim
tion we use here the arrangement of critical points lines
pends only quantitatively on the functionality of the mon
mers. Therefore, some particular topological types of
phase diagrams do or do not exist independently on the v
of f . For example, the topological types of phase diagra
of the systems withf 51, where only dimers can appear, a
the same as in the system withf >3, where an infinite cluster
of bonds may arise. The only difference between the syst
with different functionalities is in the particular values of th
reduced energy and entropy of the bond necessary for oc
rence of this or that type of phase diagrams. Due to t
peculiarity of the system under consideration, the phase
icense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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traits of all symmetric systems with alternating associat
are topologically identical. For definiteness, in what follow
we choosef 53.

2. Triple points

Let us now discuss whether triple points may be o
served in the system. One can easily see that some o
phase diagrams~for example, the one corresponding to t
straight line in Fig. 3! have a pair of high-temperature critic
points. It is natural to expect that at least some of these ph
diagrams should include also a triple point between the c
cal points mentioned above. The volume fraction cor
sponding to this triple point should obviously bef51/2 due
to the symmetry of the system. To find the line of trip
points ~the bold line in Fig. 3! we numerically solved Eq
~20!. In the low-temperature~high-x! limit this line has an
asymptote with the slope (2f )2151/6. This asymptote has
rather simple physical meaning: the highly intraconnec
phase withf51/2 is thermodynamically stable if the ass
ciation energy per one molecule is larger than the Flo
Huggins one:

« f /2.Q/2→E5«/2Q.~2 f !21. ~30!

3. Phase portrait

The next step in the phase diagrams classification i
construct the phase portrait of the system on the (DS,E)
plane~the latter parameters being the dimensionless entr
and energy of the bond: i.e., free term and slope of an a
trary straight line on the~ln k,x! plane!. The aforementioned
phase portrait given by Fig. 4 includes~i! the lines corre-
sponding to the set of tangent lines to the lines of critical a
triple points ~curves 1 and 2 on Fig. 4!, ~ii ! the line corre-
sponding to the sheaf of lines passing through the branc
point in Fig. 2 ~line 3 in Fig. 4!, and ~iii ! vertical linesE
50 andE521/6 ~lines 4 and 5 in the figure! separating the
regions with different number of low-temperature~high-x!
intersections between the straight lines~21! and the lines of
critical and triple points, respectively.@The number of inter-
sections between the line of critical points and the strai

FIG. 3. The lines of critical and triple points for the symmetric system w
f 53. The thick line is the line of triple points, thin lines the lines of critic
points. The straight line shows an example of a section, which includes
triple point @the corresponding phase diagram is shown in Fig. 5~d!#.
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lines ~21! with some particular free coefficientDS and the
slopesE56« always differ by 1 if«.0 is small enough.#

Every region on the phase portrait constructed in suc
way corresponds to a certain particular topological type
the phase diagrams. To describe the latter more precisely
need some additional classification of critical points. By de
nition, any critical pointC is such a point (fC ,TC) that for
T.TC ~or T,TC) the system becomes unstable with t
respect to separating into two phases with almost equal c
positions (uf12f2u→0 when T→TC). But some of such
critical points (fC ,TC) may ~due to presence of some oth
critical point! already belong to the region unstable with r
spect to separating into phases with finite difference of co
positions. We will refer to such critical points as the me
stable ones. The curves on the phase portrait which sepa
the regions with different sets of such metastable criti
points ~say, with different topology of spinodal lines! but
with the same set of the thermodynamically stable peculi
ties of phase diagrams~or, say, with the same topology o
binodal lines! are given by dashed lines in Fig. 4.

4. Phase diagrams

Let us now consider all the types of phase diagra
corresponding to the different regions on the phase port
Even though bothE andDS are constant parameters for an
real system, we use the expressions like ‘‘increase ofE’’
rather widely with the purpose to describe evolution of t
global phase behavior when varying the systems with diff
ent E andDS.

5. Low association at any temperature

This takes place ifDS is sufficiently less than zero an
E is positive. The phase diagrams of this type are sho
on Fig. 5~a!, which is similar to the trivial phase diagram o
a nonassociating two-component blend.

6. High association at low temperature

As E passes zero the association begins to increase
the decrease of temperature. IfE stays higher than21/6, a

he

FIG. 4. The phase portrait of the symmetric system withf 53. The numbers
are marking the lines of the phase portrait~for their meaning see the main
text!: the letters are marking the regions. For any region marked by ‘‘x’’ the
example of corresponding phase diagram is given in Fig. 5~x!.
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FIG. 5. The examples of phase dia
grams of the symmetric systems wit
f 53. The temperature is measure
in the units of x21 ~i.e., is renor-
malized by the factor 2/Q: thick lines
correspond to the binodals and thi
lines to the spinodals.~a! E50.1,
ln k050; ~b! E520.15, lnk0521.3;
~c! E520.25, lnk0522; ~d! E50.1,
ln k052; ~e! E520.1, lnk050; ~f!
E520.1, lnk051; ~g! E520.25,
ln k050; ~h! E520.25, lnk0521.6;
~i! E520.26, lnk0521.8; ~j! E
520.45, lnk0522.99; ~k! E520.7,
ln k0525.1. The inset shows an en
larged picture of the area within the
dashed rectangle.
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metastable critical point arises on the phase diagram@see
Fig. 5~b!#. In this case the association constant tends to
finity at low temperatures but the condition~30! is still not
valid. Thus, a homogeneous phase with nearly stoichiome
composition~i.e., close tof51/2! may exist below such a
critical point. It is important to stress that this phase is s
metastable for any temperature lower thanTcrit . In the sys-
tems withE,21/6 the low-temperature phase with stoichi
metric composition ~PSC! becomes thermodynamicall
stable at sufficiently low temperaturesT,Ttr,Tcrit and a
so-called peritectic~low-temperature triple! point29 appears
on the phase diagram@see Fig. 5~c!#.

7. High association at high temperature

This occurs if the high-temperature limit of the assoc
tion constant,DS, is large enough. IfE.0 ~i.e., association
decreases with the increase of temperature!, the correspond-
ing phase diagram contains a triple point@see Fig. 5~d!#. The
rise of this triple point is due to the fact that at high tempe
ture, when association is strong, the blend with nearly s
Downloaded 30 Dec 2011 to 93.180.55.234. Redistribution subject to AIP l
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ichiometric composition~BSC! is thermodynamically more
favorable then any other blends. Now, if the energy of
bondE becomes negative, in addition to the aforemention
high-temperature triple point a metastable PSC similar
that on Fig. 5~b! appears on the phase diagram@see Fig.
5~e!#. If E decreases further~but still E.21/6), the two
metastable critical points on the phase diagram may me
and so the BSC turns to be at least metastable at all temp
ture ranges@see Fig. 5~f!#.

8. High association at any temperature

The further evolution of phase diagrams with the dim
ishing ofE depends very much on the value ofDS. If DS is
sufficiently large~i.e., when association is very strong at a
temperatures!, the BSC becomes thermodynamically stab
as soon as the bond energy turns lower then the critical v
of 21/6. The corresponding phase diagram is shown on
5~g!. As consistent with the discussion above, in the case
high association the phase diagram is a combination of
phase diagrams of two nonassociating systemsA1AB and
icense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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AB1B. Now, if the entropy of the bondDS is not large
enough, the crossing of critical valueE521/6 leads to ap-
pearance of low-temperature stable FSC, which can be
companied by both a pair of metastable critical points an
continuous corridor of metastability@Figs. 5~h! and 5~i!, re-
spectively#. Note that while energyE is decreasing~with DS
staying constant!, the phase diagram of Fig. 5~h! first pro-
ceeds into one shown at Fig. 5~i! and, with further diminish-
ing, into the phase diagram shown at Fig. 5~g!.

Two more topological types of phase diagrams includ
the closed immiscibility loopsmay occur if both the entropy
and energy of the bond are negative and large in abso
value ~which means that the association is low at high te
peratures and increases drastically while temperature
creases!. These phase diagrams are shown on Figs. 5~j! and
5~k!. The physical reason for these diagrams to appear i
follows. At high temperatures the association is almost
sent and phase diagrams of Figs. 5~j! and 5~k! are almost
similar to that on Fig. 5~a!. When temperature decreases a
sociation becomes more and more strong and therefore
mixture stabilizes. Depending on the values of paramet
such stabilization may result to appearance of the symme
lower critical solution temperature~LCST! @Fig. 5~j!# or a
pair of asymmetric LCST separated by the triple point
stoichiometric concentration@Fig. 5~k!#. At last, at the low
temperatures the association is very strong and there
phase diagrams of Figs. 5~j! and 5~k! are similar to one given
by Fig. 5~g!.

Summarizing the results of this section, we found sev
different topological types of phase diagrams possible
symmetric systems with alternating association at differ
entropy and energy of the bond. The number of topologica
different types of phase diagrams increases to 11 if the m
stable critical points are included. The main trend govern
all the variety of these phase diagrams is an associat
induced increase in the thermodynamic stability of BSC

In the next section we analyze the phase behavior of
asymmetric systems with alternating association. Natura
we expect in this case even higher diversity of phase
grams as, on the one hand, the main physical trend being
rise of thermodynamic stability of the BSC is retain
and, on the other hand, the special symmetry of the ph
diagrams with respect to the transformationf↔12f is
removed.

C. Asymmetric systems

1. Critical points

Let us apply the procedure of the phase diagrams cla
fication to the general case of asymmetric systems withf 1

Þ f 2 . Using the mass action laws~12! and the spinodal equa
tion ~17! it is easy to express the spinodal values of
association constant, Flory–Huggins parameter and volu
fraction as functions of conversions:

k5
f 1G11 f 2G2

f 1f 2~12G1!~12G2!
, ~31a!
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~ f 1G11 f 2G2!2

f 1f 2G1G2
1

f 1G11 f 2G2

12G1G2

3~21G1f 1 / f 21G2f 2 / f 1!, ~31b!

f5
f 2G2

f 1G11 f 2G2
. ~31c!

Substitution of the spinodal conversion
G1(k,x),G2(k,x) defined by Eqs.~31! into Eq. ~19! gives
the lines of critical points on the (lnk,x) plane. These lines
are plotted on the Fig. 6 for the case off 153, f 2

51, 2, 3, 4. One can see that in the case off 1Þ f 2 these
curves have two disconnected branches. The first, mon
nous high-temperature~low-x! one approaches the trivia
critical point x52, f50. in the limit of k→0. Whenk in-
creases, the critical value ofx also increases and the critica
compositionfc shifts toward the pure low-functional com
ponent~i.e., increases forf 251, 2 and decreases forf 254).
In the limit of high associationk→` almost all bonds have
reacted and the high-temperature branch of critical po
line approaches the critical point of the mixture of the pureL
component and stableLH associates,L andH being the low-
and high-functional components, respectively. The seco
low-temperature branch, in turn, consists of two curves se
rated by the cusp. The low-x curve approaches in the limit o
k→` the critical point of the mixture of the stableLH asso-
ciates and pureH component. Note that in the symmetr
case the aforementionedLH/H andLH/L systems are physi
cally identical and therefore two lines of critical points wi
vertical asymptotes degenerate in this case into
‘‘double’’ line as discussed in the previous section. T
high-x branch of the critical points line once again has
logarithmlike form in the limitx→`:ln k;ln x. In this limit
the critical compositionfc is equal to the stoichiometric on
fst5 f 2 /( f 11 f 2) and it shifts towards the pureH compo-
nent~i.e., decreases forf 251, 2 and increases forf 254) if x
is finite. Thus, the region of volume fractions betwe
f50.5 andfst never includes any critical points.

2. Triple points

In Fig. 7 the lines of critical~thin! and triple~thick! lines
for this system are shown. Similarly to the case of symme

FIG. 6. The lines of critical points of the asymmetric systems forf 153 and
f 251 ~dashed line!, 2 ~thick line!, 3 ~thin line!, and 4~dotted line!.
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systems the line of triple points has an asymptote wh
slope in this case equals (f 11 f 2)21, which is the evident
generalization of Eq.~30!. Let us stress also an importa
difference from the symmetric case: now the line of trip
points starts in a pointT rather than in the cuspC of the
critical points curve. The case is that in the symmetric c
only pairs of critical points withequal critical temperature
may exist and therefore thereshould be a triple point be-
tween them. But in the asymmetric case the equality of c
cal temperatures is not required and therefore the phase
grams may include not only ‘‘critical-point–triple-point
critical-point,’’ but also ‘‘critical-point–metastable-critical
point’’ combination.

Evidently, the distance between two branches of
critical line in the limit k→` as well as that between th
pointsC andT increases with increase of the differenceu f 2

2 f 1u but the disposition of the critical and triple points line
stays the same. Thus, similarly to discussion of the symm
ric systems above, one can expect that the topology of
resulting phase portraits of the asymmetric systems will
depend on the specific values off 1 , f 2 . Due to this reason
we have chosen in what followsf 152 and f 253 as the
lowest values of functionalities for which infinite cluster ma
arise in the system.

3. Phase portrait

In Fig. 8 the corresponding phase portrait is shown
includes the following six curves:~i! the curves correspond
ing to the set of tangents to the lines of the critical and tri
points~curves 1 and 2 in the figure!, ~ii ! those corresponding
to the sheaf of the straight lines drawn through the cusp
the critical points line and the intersection between the cri
and triple point lines~lines 3 and 4, respectively!, and ~iii !
the vertical linesE50 andE520.252( f 11 f 2)21 ~lines 5
and 6! which separate the regions with different numbers
low-temperature critical and triple points.

Similarly to the symmetric case, we separate the regi
with different binodal topology by the solid curves, an
those, which differ only in the metastable peculiarities
phase diagrams, by the dashed ones.

FIG. 7. The lines of critical~thin line! and triple~thick line! points of the
asymmetric system withf 152, f 253.
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4. Phase diagrams

In the case oflow association at any temperature—i.e.,
for positive E and negativeDS with sufficiently large
uDSu—we get a trivial phase diagram with one critical poi
@Fig. 9~a!#. If the association slowly increases with the d
crease of temperature~i.e., if 20.2,E,0), similarly to the
symmetric case, a metastable phase with nearly stoic
metric concentration arises@see Fig. 9~b!#. On the contrary,
the high-DS behavior of phase diagrams differs from that
the case of symmetric systems. The difference is that be
the eutectic point arises on the phase diagrams there is a
regionc where the phase diagrams have two metastable c
cal points@Fig. 9~c!#. The aforementioned peculiarities—th
low- and high-temperature metastable critical points—m
arise simultaneously@Fig. 9~d!# or even merge giving rise to
a corridor of metastability of the BSC@see Fig. 9~e!#.

Let us now consider the regions of the phase port
corresponding toE.20.2 andDS large enough. In this cas
the association at high temperature is highand it either de-
creases~if E.0) or slowly increases~if 20.2,E,0) with
the decrease of temperature. IfE is positive, we have a phas
diagram with eutectic point@Fig. 9~f!#. When the bond en-
ergy becomes negative, a metastable PSC arises@Fig. 9~g!#,
which accrete with a high-temperature metastable reg
with a further decrease ofE @see Fig. 9~h!#.

Phase diagrams withE,20.2 correspond tohigh asso-
ciation at low temperatures. The main peculiarity of all this
diagrams, similarly to the symmetric case, is the thermo
namic stability of a BSC in the low-temperature region.
the bond entropy, and, therefore, association at high temp
ture, is sufficiently small, the phase diagram differs from th
given by Fig. 9~a! only by the presence of low-temperatu
PSC@see Fig. 9~i!#. In the regions~j!, ~k!, ~l!, which are close

FIG. 8. Phase portrait of the asymmetric (f 152,f 253) system with alter-
nating association. The area close to the line 4 includes plenty of m
details. To show them better we plotted the linesD(E)5(ln k0)i(E)
2(ln k0)4(E), where (lnk0)i(E) is an i th line of phase portrait, in the inset
The numbers are marking the lines of the phase portrait~for their meaning
see the main text!: the letters are marking the regions. For any regi
marked by ‘‘x’’ the example of corresponding phase diagram is given
Fig. 9~x!.
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FIG. 9. The examples of phase dia
grams of the asymmetric systems wit
f 152, f 253. The temperature is mea
sured in the units ofx21 ~i.e., is renor-
malized by the factor 2/Q: thick lines
correspond to the binodals and thi
lines to the spinodals.~a! E50.1,
ln k050; ~b! E50.15, lnk053; ~c! E
520.175, lnk0521; ~d! E520.12,
ln k050; ~e! E520.16, lnk0520.2;
~f! E50.3, lnk056; ~g! E520.075,
ln k051.1; ~h! E520.1, lnk052; ~i!
E520.4, lnk0523; ~j! E520.43,
ln k0522.92; ~k! E520.24, lnk0

521.24; ~l! E520.33, lnk0522;
~m! E520.4, lnk0522; ~n! E
520.6, lnk0524.6; ~o! E521,
ln k0525; ~p! E520.24, lnk0

520.8; ~q! E520.85, lnk0527.4.
The inset shows an enlarged picture
the area within the dashed rectangle
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to the intersection of the lines 4 and 6 on the phase por
~see Fig. 8!, there are three more types of the phase d
grams. These phase diagrams differ from each other
from that shown on Fig. 9~i! by the number of metastabl
critical points and/or the presence of a metastable corrido
miscibility ~MCM!. Their appearance is due to merging
low- and high-temperature spinodals@Fig. 9~j!, one meta-
Downloaded 30 Dec 2011 to 93.180.55.234. Redistribution subject to AIP l
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stable critical point and MCM#, the appearance of a pair o
new high-temperature metastable critical points@Fig. 9~k!,
three metastable critical points#, and the combination of
these two peculiarities@Fig. 9~l!, three metastable critica
points and MCM#.

If DS is large enough andE,20.2 ~i.e., association is
high at all temperatures!, the phase diagram takes the for
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shown on Fig. 9~m!. As expected, it is just a combinatio
of two trivial @similar to Fig. 9~a!# phase diagrams o
two-component systemsA1AB and AB1B. When DS
decreases, one of the immiscibility regions on Fig. 9~m!
~which with the predominance of the low-functional comp
nent! increases in size and acquires a specific hood
form ~somewhat similar phase diagrams for one-compon
systems are found in Refs. 11 and 16!. This deformation
of the immiscibility region can entail two new peculiaritie
of phase diagrams. First, a pair of metastable criti
points may arise at the hoodlike spinodal@Fig. 9~n!#,
and second, the upper part of the hood may break away f
the lower part, giving rise to a phase diagram with aclosed
immiscibility loop @Fig. 9~o!#. This phase diagram
corresponds to the situation when the straight line~21! inter-
sects three times the tangentlike low-x critical points curve
in Fig. 7.

The last two types of phase diagrams shown in Figs. 9~p!
and 9~q! correspond toE,20.2 and intermediate values o
DS. The reason for their appearence is that there are t
different ways to transform a phase diagram with peritec
point @Figs. 9~i!–9~l!# into that with two immiscibility re-
gions @Figs. 9~m! and 9~n!# via increasingDS:

~i! If uEu is sufficiently low~but not lower then 0.2!, one
starts with the phase diagram of Fig. 9~l!, in which an eutec-
tic point appears with the increase ofDS @see Fig. 9~p!#.
With an increase ofDS the eutectic and peritectic point
approach each other until, eventually, they merge, giving
to the phase diagram type shown at Fig. 9~m!.

~ii ! If uEu is a bit larger, the peritectic type phase diagra
@either of Fig. 9~j! or Fig. 9~l! type# just transforms into tha
with two immiscibility regions by adhesion of a triple poin
to the outer binodal line. As a result, the phase diagra
shown in Figs. 9~m! and 9~n! we discussed above appear.

~iii ! If uEu is large enough, the inner and outer binod
merge at a temperature lower than that of the triple po
giving rise to the phase diagram shown in Fig. 9~q!. The
further increase of the bond entropy leads to transforma
of this phase diagram into that shown in Fig. 9~n!.

Thus, we listed the topological types of phase diagra
corresponding to all regions on the phase portrait.

IV. CONCLUSIONS

Thus, the global phase behavior of two-component s
tems with alternating association is governed by
association-induced increase in the thermodynamic stab
of blends of stoichiometric composition and differs subst
tially from that of the systems with self-association, which
rather dependent on the fact if an infinite cluster of lab
bonds occurs in the system.17 As consistent with the full
topological classification of the phase diagrams we prese
above within the framework of the conventional Flory a
proach, the phase behavior of the systems with alterna
association is rather diverse. We found seven possible to
logical types of their phase diagrams, even distinguish
them only with respect to the topologically different bi
odals. If the metastable critical points are also taken i
account, then the number of possible topological types
creases up to 11 in the case of symmetric and up to 17 in
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case of asymmetric systems. Nontrivial phase behavio
systems with alternating association is not exhausted
closed immiscibility loops, but includes also triple poin
~eutectics and pertectics!, metastable critical points, and eve
completely metastable phases.

All these elements are far from being typical for liquid
liquid phase diagrams but often observed in the liquid–so
and solid–solid phase diagrams32 ~in particular, for sulfide,
oxide, and silicate systems, where the cation–anion inte
tions can be roughly modeled as forming of ionic bon
between the otherwise thermodynamically incompati
ions!. We consider this fact as a qualitative confirmation
our theory because the difference between the solid and
uid states is beyond the accuracy of the Flory approxima
to which we restricted ourselves in this work.

Indeed, this approximation does not allow for influen
of some additional correlations due to cyclization~i.e., intra-
cluster bonding!, intracluster and intercluster van der Waa
interactions, and the angle-dependent interactions betw
the bonds adjacent to the same monomer. Some of th
additional correlations may lead to the occurrence o
crystal ordering in the systems under considerati
Despite many attempts to overcome this sho
coming,4,6,7,13,15,17,26,33–37the role of these correlations i
still far from being clear. Thus, there are two reasons in fa
of using here the Flory approximation elaborated ear
by one of us5,13 as well as other authors.6,9,10,15 First,
this approximation is comparatively simple, and it
this feature which enabled us to carry out the full topologi
classification of the phase diagrams of the systems w
alternating association. Second, the Flory approach
the most commonly used one in the scientific commun
which enables the reader to concentrate on the main re
of our consideration rather than query validity of a ne
approximation.

And this most important result of our consideratio
is that the phase behavior of the associating system
not only governed by the qualitative characteristics
association~i.e., is it self- or alternating association, etc!
but also depends drastically on the quantitative characte
tics of the bonds. More precisely, to predict the phase beh
ior of an associating system one should not only define
general characteristics~say, the type of associatio
and monomers functionalities!, but also measure the particu
lar values of the entropy and energy of the bond and spe
to which region of the phase portrait do these values co
spond. In this respect, other approximations are expe
to give only some new subtle details30,31 as compared to
what is found within the Flory approximation. Evidently, th
essential role of the quantitative characteristics of the bo
will remain in the more complex systems whose phase
havior we suppose to discuss elsewhere. We believe that
ther analysis along this vein could result in elaboration
strict quantitative theory of hydrophobic and hydrophilic i
teractions.
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