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Abstract—A new mathematical model is proposed for a circular gene network representing a system of
unidirectionally coupled ordinary differential equations. The existence and stability of special periodic
motions (traveling waves) for this system is studied. It is shown that, with a suitable choice of param-
eters and an increasing number m of equations in the system, the number of coexisting traveling waves
increases indefinitely, but all of them (except for a single stable periodic solution for odd m) are quasi-
stable. The quasi-stability of a cycle means that some of its multipliers are asymptotically close to the
unit circle, while the other multipliers (except for a simple unit one) are less than unity in absolute
value.
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1. FORMULATION OF THE PROBLEM
The study of artificial genetic oscillators is motivated by the circumstance that they are simplified mod-

els of key biological processes, such as cell cycle and circadian rhythms. The simplest genetic oscillator,
known as a repressilator, was proposed in [1]. It consists of three elements , , each unidirec-
tionally inhibiting its neighbor. More specifically,  inhibits the synthesis of ,  inhibits the synthesis
of , and , which closes the cycle, inhibits the synthesis of .

The mathematical model of this gene network has the form

(1.1)

where . Following [1], we assume that each element  is a set of mRNA (message RNA) of con-
centration  and protein of concentration . Furthermore, the time variation in  is assumed to be char-
acterized by synthesis and degradation. The former of these processes is described by the function

, where  is the concentration of the repressor protein for the jth mRNA,  is
the cooperativity coefficient, and  is the transcription rate in the absence of the repressor.
The latter process is described by the linear term . Finally, the additive term  in the equation for

 describes the leakiness of the promoter.

In the case of protein concentrations , the situation is simpler. Namely, we assume that their dynam-
ics are characterized by linear synthesis (the term  in the equation for  in system (1.1)) and by linear
degradation (the term  in the same equation). Here,  is the ratio of the protein degra-
dation rate to the mRNA degradation rate.
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660 GLYZIN et al.
As a rule, model (1.1) is studied assuming that  and  are small. In this case, making the substitution
 and dropping the addition  yields a singularly perturbed system, to which the Tikhonov well-

known reduction principle is applied [2]. As a result, we obtain the system

(1.2)

The problem of self-excited oscillations in (1.2) and similar systems arising in the modeling of gene
networks has been extensively investigated (see, e.g., [3–10]). Available analytical and numerical results
suggest that, for  and a suitable increase in , model (1.2) has a stable cycle that is self-symmetric
(i.e., invariant under cyclic permutations of the coordinates). The self-symmetry property implies that this
cycle can be represented in the form

(1.3)
where  is the phase shift. Note that the period of cycle (1.3) is .

The interaction of the concentrations  and  described above is surprisingly similar to the interaction
of six ecological populations—three predators and three preys. Indeed, suppose that  ( ) and 
( ) are the population densities of the predators and preys, respectively. Then, by virtue of (1.1),
each predator  feeds on only one prey  (for ,  decays exponentially) and, at the same time,
exerts pressure only on the prey . The last means that the growth rate of  decreases with
increasing . Additionally, if the repressor predator is absent ( ), then  tends to the threshold
value  as .

In view of this ecological interpretation, the gene network can be modeled using Yu.S. Kolesov’s
approach [11]. In the case of an arbitrary number of elements , , interacting according to
the circular principle, this approach yields the system

(1.4)

where , , a, and  are positive constants. It should be emphasized that the term , which is similar
to the addition  in (1.1), was intentionally added to the equation for , thereby violating its Volterra
structure. As will be shown below, the condition  cannot be omitted in our case, in contrast to
system (1.1), where we can set .

As system (1.1), the new mathematical model of repressilator (1.4) can be simplified. Specifically,
assume first that  and . Then, according to the reduction principle [2], as , we
have , . For the components , we obtain the system

which, after making the normalizations  and , becomes

(1.5)
By traveling waves of system (1.5), we mean special periodic solutions that can be represented in the

form

(1.6)

Below, the existence and stability of such solutions are analyzed in the case where , , and the
parameter a is on the order of unity. More precisely, we assume throughout that

(1.7)
It will be shown later that, under conditions (1.7), the number of coexisting periodic solutions (1.6) to

system (1.5) increases indefinitely as  and  consistently. However, all of them (except for
a single stable solution for odd m) are quasi-stable. Namely, the stability spectrum of each of these peri-
odic solutions contains a nonempty group of multipliers , , lying at a distance of order

, , from the unit circle.
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2. GENERAL SCHEME FOR THE STUDY
To simplify the subsequent analysis, in system (1.5), we make the exponential changes of variables

, , where . As a result, in view of relations (1.7), the system
becomes

(2.1)

where . According to (1.6), we are interested in periodic solutions of system (2.1) that can be rep-
resented in the form

(2.2)

where  and  is a T-periodic solution of the auxiliary delay equation

. (2.3)

Direct verification shows that components (2.2) satisfy system (2.1) if and only if , .
Given a positive integer k, assume that Eq. (2.3) has the required periodic solution  of period

. Then the stability analysis of the corresponding cycle (2.2) is reduced to analyzing the location
of multipliers of the linear system

(2.4)

where  and the coefficients  and  are given by

(2.5)

Along with (2.4), in what follows, we will need the auxiliary linear delay equation
(2.6)

where  is a scalar complex-valued function and  is an arbitrary complex parameter. More precisely,
we will be interested in its multipliers , , arranged in decreasing order of moduli.

Let us explain the meaning of a multiplier as applied to Eq. (2.6). For a fixed number , consider
the space  of continuous complex-valued functions  for  with
the norm

The monodromy operator of Eq. (2.6) is a bounded linear operator  acting on an arbitrary func-
tion  according to the rule

(2.7)

where  is the solution of Eq. (2.6) on the time interval  with an initial func-
tion , . Note that the spectrum of this operator is always discrete, since some power
of V is compact (for , V is compact itself). By the multipliers of Eq. (2.6), by analogy with ordinary
differential equations, we mean the eigenvalues of operator (2.7).

To study the relation between the multipliers of system (2.4) and Eq. (2.6), the so-called tuning method
with respect to the parameter  was proposed in [12]. According to this method, we consider the family
of equations

(2.8)
It turns out that there is a correspondence between the nonzero roots of these equations and the multipli-
ers of system (2.4). More precisely, the following assertion holds (see [12–14]).

Lemma 2.1. For each multiplier  of system (2.4), there is a positive integer  that such

(2.9)

where  is a root of Eq. (2.8) at . Conversely, given some , if Eq. (2.8) has a nonzero root ,
then the original system (2.4) has a multiplier of form (2.9).
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Fig. 1.
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Thus, the analysis of the existence of cycles (2.2) in system (2.1) is reduced to the search for periodic
solutions of the auxiliary scalar equation (2.3) with periods . The stability of traveling waves is
analyzed separately and, by Lemma 2.1, is reduced to the asymptotic computation of the roots of
Eqs. (2.8). Below, both these issues are studied for positive integer m and k satisfying the conditions

(2.10)

3. ANALYSIS OF THE AUXILIARY NONLINEAR EQUATION
Our nearest goal is to show that, for any fixed values of the parameters a, b, Δ satisfying the inequalities

(3.1)

and for all , the auxiliary equation (2.3) has a nontrivial periodic solution.
For a formulation of corresponding result we consider periodic function

(3.2)

where  and  (this function is plotted in Fig. 1).
Lemma 3.1. Under conditions (3.1), for all sufficiently small , Eq. (2.3) has a cycle  of

period  that satisfies, as , the asymptotic equalities

(3.3)

First, we describe the general scheme for proving this lemma. Let  be a fixed constant satisfying the
conditions

(3.4)

The set  of initial functions  is defined as
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where  are universal (independent of ) constants, which will be specified later. Below, we
are interested in the solution , , of Eq. (2.3) with an arbitrary initial value ,
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(if it exists). The operator  from S to  is defined as

(3.7)

As will be shown later, with a suitable choice of the parameters , , operator (3.7) is defined on set (3.5)
and, moreover, ,  . Furthermore, since S is closed, bounded, and convex and
the operator  is compact by virtue of the inequality , the Schauder principle implies that  has
at least one fixed point  in S. It is also clear that the solution  of Eq. (2.3) is peri-

odic with period . This solution is the desired one, since it possesses asymptotic properties (3.3)
(which will be shown later).

To implement the above-described scheme, we need to know a uniform (with respect to ) asymp-
totic representation of the solution  on various intervals of t. The corresponding constructions are
divided into eight stages. First, we consider the time interval

(3.8)

By virtue of the conditions imposed on  (see (3.4)), for t from interval (3.8), we have
. Combining this relation with (3.5) yields

(3.9)

here and below, the same letter q is used to denote different universal (independent of , , ϕ) positive
constants, whose exact values are of no matter. Assume that the following a priori estimate holds on
interval (3.8):

(3.10)

By analogy with the letter q in (3.9), the symbol const will denote different constants independent of , , ϕ.
Combining relations (3.9) and (3.10), we conclude that, for t from interval (3.8), the solution  is

determined by the Cauchy problem
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A simple analysis of (3.11) yields the asymptotic representation (uniform in , )
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where . By virtue of (3.12), the a priori estimate (3.10) holds with any constant
.
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over, condition (3.10) is assumed to hold on interval (3.13). From (3.10) and (3.12), it follows that 
can be found from a Cauchy problem similar to (3.11), namely,
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 with respect to the discrepancy. From this, it is easy to conclude that, as  uniformly
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At the third stage, we consider t from the interval

(3.16)
In this case, by virtue of the first stage (see (3.12)), we have

(3.17)

Making the substitutions  and  in Eq. (2.3) and taking into account relation (3.17)
in its right-hand side, we assume that the a priori estimate (3.10) is valid as before. As a result, in view

of (3.15), for finding the function , we obtain the Cauchy problem

(3.18)

First, consider the simplified equation

Note that it has the solution
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with asymptotics
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Assume also that, the following a priori conditions are valid on interval (3.24):

(3.26)

where .
Combining the above information, we conclude that, at this stage, Eq. (2.3) becomes

According to asymptotic representations (3.20) and (3.23), it has to be supplemented by the initial
condition

From this, we easily obtain the asymptotic equality (uniform in , )

(3.27)

Now we check the a priori assumptions (3.26). It follows from (3.27) that the required estimates are
valid with constants .

At the fifth stage, we consider t from the interval
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As a result, we conclude that the remainder  is exponentially small. Thus, we have the following asymp-
totic representation, which is uniform in t from interval (3.28) and :

(3.33)

At the sixth stage, we consider the time interval

(3.34)

In this case, , and, hence, the asymptotic equality (3.25)
holds as before. Assume that the a priori condition

(3.35)

is fulfilled on interval (3.34). Then it is easy to see that the solution  satisfies the equation

(3.36)

According to asymptotic representations (3.32) and (3.33), it has to be supplemented by the initial
condition

(3.37)

The resulting Cauchy problem (3.36), (3.37) is similar to (3.14). Direct verification shows that, up to
, its solution is the function . From this, we easily derive the asymptotic

representation (uniform in , )

(3.38)

It should also be noted that, by virtue of (3.38), the a priori condition (3.35) holds on interval (3.34) with
any constant .

At the seventh stage, we consider t from the interval
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(3.40)

Moreover, we assume that the a priori estimate (3.35) remains valid on interval (3.39). Taking into account
these relations and making the substitutions  and  in Eq. (2.3), for the func-
tion , we derive the equation

(3.41)

According to the preceding stage (see (3.38)), it has to be supplemented with the initial condition

(3.42)

To analyze the Cauchy problem (3.41), (3.42), we need the function
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where
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Formulas (3.43) and (3.44) imply that

(3.45)

Furthermore, it follows from (3.43)–(3.45) that  satisfies Cauchy problem (3.41), (3.42) up to
 with respect to the discrepancy. From this, we conclude that (see similar arguments in the

analysis of problems (3.18) and (3.29), (3.30))

(3.46)

uniformly in , . It is remains to note that, according to (3.45) and (3.46), the a
priori estimate (3.35) is satisfied on interval (3.39) with any constant .

Finally, at the eighth stage, we consider the time interval
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In this case, under the a priori assumptions
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where , we follow the method of steps, i.e., divide interval (3.47) into subintervals
of length at most , which are considered sequentially.
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For these t, by virtue of (3.45), (3.46), and (3.48), we need to consider the Cauchy problem

Thus, on interval (3.49), we have the asymptotic representation (uniform in t, ϕ)
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At the subsequent steps, the argument is similar: by virtue of estimates (3.48), we again deal with the
equation . At the left endpoint of the interval, supplementing it with an initial con-
dition known from the preceding step, we obtain asymptotic representation (3.50) at the current step.
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that conditions (3.48) are valid. Combining formula (3.50) with the asymptotic representations obtained
at the fourth to seventh stages and taking into account condition (3.4) for , we see that estimates (3.48)
are satisfied with constants , , and .

Summarizing, the formulas for  obtained at the eight stage imply that the root  of
Eq. (3.6) belongs to the time interval , on which  has the asymp-
totic representation (following from (3.50))

Combining this representation with the obvious equality , we see that the root
 is simple and, as , has the asymptotic expansion (uniform in )
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Formulas (3.51) and (3.52) imply that operator (3.7) is defined on the set S and, uniformly in ϕ,

(3.53)

By virtue of (3.53), the required inclusion  is satisfied for all sufficiently small  if

(3.54)

where  is the set of functions obtained from S by replacing the nonstrict inequalities in (3.5) by strict
ones. Recall that the parameter  is assumed to satisfy constraints (3.4), which ensure that 
and  for . Accordingly, the validity of inclusion (3.54) is achieved by using the
parameters , , assuming that

(3.55)

Thus, the operator , which is compact due to the obvious inequality  (see (3.51)), under
conditions (3.4) and (3.55) on the parameters , , and , transforms the closed bounded convex set S
into itself. Thus, by the Schauder principle,  has at least one fixed point  in S and the corre-
sponding solution  of Eq. (2.3) is periodic with period . The required asymp-
totic representations (3.3) follow formulas (3.51) and (3.52). Lemma 3.1 is proved.

4. ANALYSIS OF THE AUXILIARY LINEAR EQUATION
In this section, we study the asymptotic behavior of multipliers of a linear equation similar to (2.6),

namely,

(4.1)

with coefficients given by (2.5) at .

Consider the set of initial functions

(4.2)

where, as in Section 2, E is the space  over the field of complex numbers and  is the
norm in E (defined in a usual manner). Let  denote the solution of Eq. (4.1) with an arbitrary
initial function  from set (4.2), and let  be the solution of this equation with the initial func-
tion , . Integrating Eq. (4.1) by the method of steps, we see that, on the interval

, the above-mentioned functions are power functions of , i.e.,

(4.3)

where

(4.4)

and  is the integer part. Note also that

(4.5)

For an asymptotic analysis of the multipliers of Eq. (4.1), we need the following result.
Lemma 4.1. There exists a sufficiently small  such that, for all ,

,  on the interval , the estimates

(4.6)
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hold with constants  independent of . Moreover, as , the asymptotic representations

, (4.7)

hold uniformly in  (here and below,  denotes the nth derivative with respect to ).
Proof. The first inequality in (4.6) is proved by induction. For this purpose, the time interval

 is divided into subintervals of the form , , and
, where  is given by (4.4).

At the first step, i.e., for , the solution  is given by the explicit formula

(4.8)

Furthermore, combining (4.8) with the estimates

(4.9)

which follow from (2.5) and the well-known properties of  (see (3.3)), we see that

(4.10)

At the th step, according to (4.3)–(4.5), the function  is a polynomial in  of degree .
Assume that it satisfies an estimate similar to (4.10), namely,
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which follows from (3.3), we derive from (4.12) an estimate of form (4.11) at the nth step. Thus, after 
steps, we obtain the first inequality from (4.6).

The second inequality from (4.6) and formulas (4.7) are established simultaneously by means of the
asymptotic integration of Eq. (4.1) with the initial condition  on the interval . The
corresponding analysis is divided into the same eight stages as in the case of Eq. (2.3). Omitting the tech-
nical details, we present the results.

At the first stage, i.e., for t from interval (3.8), the coefficient  is exponentially small (see (4.9)),
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In view of these results, for the function , which is a polynomial in  of the first degree for t under con-
sideration, we obtain the formulas (uniform in t, )

(4.13)

At the second stage, the coefficients of Eq. (4.1) have the asymptotic representations

Combining them with (4.13), we see that, as , uniformly in , ,

(4.14)

At the third stage, for  and , we have

where  is function (3.19) and, by virtue of (4.13),  satisfies

These formulas imply that the function , which is now a second-degree polynomial in , satisfies the
asymptotic representations (uniform in , )
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The sixth stage is related to time interval (3.34), on which

and formulas (4.16) are again valid. Combining these relations with asymptotic representations (4.18), we
conclude that, as , uniformly in , ,

(4.19)

The seventh stage, at which we deal with time interval (3.39), is the most complicated. Here, as ,
the coefficients (2.5) have the representations

where  is function (3.43) and  is given by formulas (4.15) (in which t is replaced by ).
Combining these results with equalities (4.19) from the preceding stage, we conclude that, first, for t under
consideration, the function  is a third-degree polynomial in  and, second, uniformly in t,

(4.20)

Finally, at the eighth stage, we consider time interval (3.47). In this case, the coefficients  and
 are exponentially small and  is a polynomial in  of degree at most  (see (4.4)). Based on these

results and relations (4.20), we obtain the asymptotic representations (uniform in t, )
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It remains to be noted that the second estimate in (4.6) and equalities (4.7) follow automatically from for-
mulas (4.13)–(4.15) and (4.17)–(4.21). Lemma 4.1 is proved.

Now we pass to the asymptotic computation of the multipliers of Eq. (4.1). For this purpose, we con-
sider the monodromy operator  of this equation acting on the space E according to the rule (similar
to (2.7))

(4.22)

where , , is the solution of Eq. (4.1) with an initial function . Let
, , denote the eigenvalues of operator (4.22) arranged in decreasing order of moduli. The fol-

lowing assertion holds.
Lemma 4.2. For any , there are , , and  such that, for all
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The multiplier  is simple, depends analytically on , and, as , has the  asymptotic rep-
resentations (uniform in )
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where  (see (4.2)) and  are the above-investigated solutions of Eq. (4.1).
Representation (4.25) implies that , where the operators  are given by

(4.26)

and, by virtue of (4.6), satisfy the estimates

(4.27)

At the next stage, we examine the spectral properties of . According to the second equality
in (4.26), this operator is finite-dimensional and its spectrum consists of two points: the simple eigenvalue

, where , and the eigenvalue  of infinite multiplicity. It fol-
lows from (4.7) that the eigenvalue  has the asymptotic representations (uniform in )

(4.28)

Returning to the original operator , we note that, by virtue of the relations

where I is the identity operator, any value  satisfying

(4.29)

belongs to the resolvent set of . Recall that the operator  satisfies the first estimate in (4.27). For

the operator , using its explicit form

and the second estimate from (4.6), we obtain the inequality

(4.30)

where .
At the final stage of the proof of Lemma 4.2, combining estimates (4.27) and (4.30) with asymptotic

representations (4.28), we see that condition (4.29) is satisfied for any , , where

(4.31)

and  by are suitably small constants. Thus, the spectrum of operator (4.22) belongs to balls (4.31),
which implies inequality (4.23).

Relations (4.24) are proved as follows. When the operator  is perturbed by an addition  of
order  that is analytic in , the eigenvalue  passes into a simple eigenvalue

 depending analytically on ; moreover,

(4.32)

(in the  metric with respect to ). Combining (4.28) with (4.32), we conclude that, for , the
multiplier  has all the required properties. Lemma 4.2 is proved.
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5. FINAL RESULTS

Recall that the analysis of the existence of traveling waves (2.2) for system (2.1) is reduced to the search
for periodic solutions of the auxiliary equation (2.3) with the periods T given by the equalities ,

. In this context, in what follows, the periodic solution of Eq. (2.3) provided by Lemma 3.1 and its
period are denoted by  and , respectively, in order to emphasize that these functions
depend on .

Let m and k be fixed positive integers related by inequalities (2.10). These inequalities imply that the
quantity  satisfies the condition . In what follows, we assume that the
parameter Δ in (2.3) ranges over some interval  for which  is an interior
point. Then, according to (3.51), we have the asymptotic representation (uniform in )

(5.1)

In view of formula (5.1), it is easy to see that the equation

(5.2)

has at least one root  such that

(5.3)

Therefore, the following assertion holds.
Theorem 5.1. Let , , and  be positive integers related by inequalities (2.10). Then there is a

sufficiently small  such that, for all , system (2.1) has a cycle (traveling wave)

(5.4)

where  and  is root (5.3) of Eq. (5.2).

Let us analyze the stability of cycle (5.4).
Theorem 5.2. Cycle (5.4) is exponentially orbitally stable if  and quasi-stable otherwise.
Proof sketch. For cycle (5.4), we consider a variational system similar to (2.4), namely,

(5.5)

where  and  are coefficients (2.5) with  and . Let
 denote the shift operator along the solutions of this system over the time from  to

. Obviously, the stability properties of cycle (5.4) can be determined via the asymptotic
computation of the spectrum of . The corresponding analysis is based on Lemma 2.1, according to
which any eigenvalue  of this operator is given by the equality , where , , are the

multipliers of the auxiliary equation (4.1) for  and  is a nonzero root of the equation

(5.6)

for . Thus, the proof of Theorem 5.2 is reduced to analyzing the location of the roots of Eqs. (5.6).
First, we determine the values of  for which it Eqs. (5.6) make sense. Specifically, we show that these

equations have no roots in the set

(5.7)

for sufficiently large fixed . For this purpose, we need the following result.
Lemma 5.1. It is true that
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where  is a positive integer given by the equality (similar to (4.4))

(5.9)

Proof. To prove inequality (5.8), the original time interval  is divided into the sub-
intervals

where  is given by (5.9). Consider the resulting intervals sequentially.

Fix an arbitrary initial vector  with  (here,  is the Euclidean
norm) and denote by

(5.10)

the solution of system (5.5) with the initial condition . The components , ,
of solution (5.10) will be estimated using the formulas

(5.11)

and the following properties of the coefficients of system (5.5):

(5.12)

First, we consider the interval . Applying formula (5.11) at  and estimate (5.12),
for the indicated t, we obtain a series of inequalities of the form
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where  for . In turn, it follows from (5.13) that

(5.14)

At the next stage, we consider the interval . According to the equality ,
where T is the period of the function , we have . Since

, it follows from (5.12) that
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The subsequent argument is standard: writing formulas (5.11) for the initial time  and com-
bining (5.14) with properties (5.12) and (5.15), we obtain estimates similar to (5.13), namely,
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where , . From these relations, it is easy to derive that

(5.17)

Assume that, at the th step, i.e., for  from the time interval ,
, we have a series of estimates similar to (5.17), namely,

(5.18)

where . Let us show that estimates (5.18) with n replaced by  then hold on the interval
.

A characteristic feature of the th step is that
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whose validity can be shown in the same way as in the case  (see (5.15)). Combining relation (5.19)
with formulas (5.11) at  and properties (5.12), we derive estimates similar to (5.16):

where . These inequalities, in turn, yield the required estimates
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Summarizing, we note that the entire collection of inequalities (5.20) for  implies that

where . Lemma 5.1 is proved.
The values of the parameter  can be tentatively localized by applying this lemma. Specifically, com-

bining estimate (5.8) with relations (2.8) and (2.9), which hold for any multiplier  of system (5.5), we
conclude that

Thus, all possible roots  of Eqs. (5.6) lies to the disk
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To reduce the set (5.21) of admissible values of , we consider the operator  obtained from
(4.22) at . Note that relations (4.3)–(4.5), (4.25), estimates (4.6), and formulas (4.13)–(4.15)
and (4.17)–(4.21) imply the representation

(5.22)

where  are bounded linear operators satisfying the estimates

(5.23)

It follows from (5.22) and (5.23) that

(5.24)

Finally, it should be noted that the inequality

(5.25)

holds on the subset  of set (5.21) for sufficiently large fixed  by virtue
of the condition  (see (2.10)).

Estimates (5.24) and (5.25) imply that, with a suitable choice of , Eqs. (5.6) have no roots in
set (5.7). In what follows, we assume that the constant R is suitably chosen.

The above analysis implies that the consideration of Eqs. (5.6) can be restricted to the values of  from
the set , where the constant  is determined by R according to Lemma 4.2 at . Note also
that, by virtue of (4.24), Eq. (5.6) with  has exactly  simple roots in the indicated set. These
roots include the unit one, since, for  and , Eq. (4.1) is the linearization of Eq. (2.3)
around the cycle  and, hence, admits a unit multiplier. The other  roots of the equa-
tion have, as , the asymptotic representation

(5.26)

Summarizing, we note that all multipliers  of cycle (5.4), except for the simple unit one, are
divided into two groups. Indeed, according to (2.8), (2.9), (4.24), and (5.26), there is a group of so-called
critical multipliers that are exponentially close to the unit circle. More precisely, as , they satisfy the
asymptotic equalities

(5.27)

The other  multipliers correspond to the roots of Eqs. (5.6) lying in the disk 

where . Moreover, since , these multipliers are exponentially small in absolute
value.

It remains to note that, in the case , the group of critical multipliers (5.27) is empty;
therefore, cycle (5.4) is exponentially orbitally stable. In the case , this cycle is quasi-stable.
Theorem 5.2 is proved.

Note that, for fixed  as , the number of indices k satisfying conditions (2.10) increases
indefinitely. From this and Theorems 5.1 and 5.2, it follows that the number of coexisting traveling waves
(5.4) also increases indefinitely as  and  consistently. However, all of them (except for a sin-
gle stable periodic motion for ) are quasi-stable. Thus, a quasi-buffer phenomenon occurs
in this case. In contrast to the usual buffer phenomenon, which is associated with the unlimited accu-
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Fig. 2.
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mulation of coexisting attractors, in this case, quasi-stable structures are accumulated unlimitedly
with growing m.

6. CONCLUSIONS

First, we discuss the limits of the applicability of model (1.5). Note that, in contrast to system (1.1), the
leakiness of the promoter cannot be neglected in this case, i.e., we cannot set . The causes of this are
clear even for . Indeed, in the three-dimensional case, for  and , system (1.5) has a stable
homoclinic triangle formed by the saddles , , , and the corresponding

α = 0
= 3m > 2a α = 0

= , ,1 (1 0 0)O = , ,2 (0 1 0)O = , ,3 (0 0 1)O
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Fig. 4.

u

0 t
separatrices (see Fig. 2, where this triangle is shown for , , , ). It is also clear that
this steady state is not biologically reasonable, since it corresponds to the extinction of one of the genes.
When the promoter leakiness is taken into account, i.e., for , the stable homoclinic triangle passes
into a stable cycle lying in the cone . In other words, the self-excited
oscillations are properly regularized. For , , , and , the above cycle has the form
shown in Fig. 3.

Thus, the case of (1.7) corresponds to the limit of applicability of model (1.5). That is why it exhibits a
quasi-buffer phenomenon. Due to this phenomenon, under conditions (1.7), the phase point of sys-
tem (1.5) can stay in a neighborhood of the quasi-stable cycle (1.6) over a time interval on the order of

, . Thus, we deal with an effect similar to the well-known Arnold diffusion.
Note that quasi-stable regimes are biologically implementable for two reasons. First, although the time

of their existence is finite, it can be comparable with the lifetime of the system. Second, from a biological
point of view, it is the small values of  that are of greatest interest.

It should be noted that, for , quasi-stable structures collapse. A numerical analysis shows that, in
this case for odd m, the only attractor of system (1.5) is a traveling-wave cycle, which is the continuation
of cycle (5.4) with respect to the parameter  for . For , , , and ,
the component  of this cycle in the  plane is plotted on a  scale in Fig. 4. In the case

, where , system (1.5) represents a genetic trigger [15]: for  and , where
, it admits two stable equilibria

with components

To conclude, we add that similar dynamics is observed in the multidimensional case of system (1.2),
i.e., for the model

Specifically, this model has a unique stable cycle of form (1.6) for odd m (with a suitable choice of the
parameters ) and is a genetic trigger for even m.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-21-00158.

= 3m = 1r = 10a α = 0

α > 0

+ = , , : > , = , ,�
3

1 2 3{( ) 0 1 2 3}ju u u u j
= 3m = 1r = 10a α = .0 01

exp( )cr = >const 0c

α
α ∼ 1

α = −( 1)/2k m = 9m = 1r = 10a α = .0 01
= 1( )u u t ,( )t u :1 20

= 02m m ≥0 1m > 1a α < −� ( 1)/4a
α = α� /r

= , , , , , , , = , , , , , ,0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 1 2 1 2 2 2 1 2 1 2 1( ) ( )O u u u u … u u O u u u u … u u

⎛ ⎞α α= , = + − .⎜ ⎟−− ⎝ ⎠

� �0 0
1 20

2

1 41 1
2 1( 1)

u u
aa u

γ
−

α= − + , = , , , , = .
+

� 0
1

1 2
1

j j m
j

u u j … m u u
u

α, γ
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 5  2018



QUASI-STABLE STRUCTURES IN CIRCULAR GENE NETWORKS 679
REFERENCES
1. M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional regulators,” Nature 403, 335–

338 (2000).
2. A. N. Tikhonov, “Systems of differential equations containing small parameters in the derivatives,” Mat. Sb. 31

(3), 575–586 (1952).
3. E. P. Volokitin, “On limit cycles in the simplest model of a hypothetical genetic network,” Sib. Zh. Ind. Mat. 7

(3), 57–65 (2004).
4. O. Buse, A. Kuznetsov, and R. A. Peréz, “Existence of limit cycles in the repressilator equations,” Int. J. Bifur-

cation Chaos 19 (12), 4097–4106 (2009).
5. O. Buse, A. Pérez, and A. Kuznetsov, “Dynamical properties of the repressilator model,” Phys. Rev. E 81

(066206) 066206-1–066206-7 (2010).
6. V. A. Likhoshvai, Yu. G. Matushkin, and S. I. Fadeev, “Problems in the theory of the functioning genetic net-

works,” Sib. Zh. Ind. Mat. 6 (2), 64–80 (2003).
7. V. A. Likhoshvai, G. V. Demidenko, S. I. Fadeev, Yu. G. Matushkin, and N. A. Kolchanov, “Mathematical sim-

ulation of regulatory circuits of gene networks,” Comput. Math. Math. Phys. 44 (12), 2166–2183 (2004).
8. S. I. Fadeev and V. A. Likhoshvai, “On hypothetic genetic networks,” Sib. Zh. Ind. Mat. 6 (3), 134–153 (2003).
9. A. Yu. Kolesov, N. Kh. Rozov, and V. A. Sadovnichii, “Periodic solutions of travelling-wave type in circular

gene networks,” Izv. Math. 80 (3), 523–548 (2016).
10. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Existence and stability of the relaxation cycle in a mathemat-

ical repressilator model,” Math. Notes 101 (1), 71–86 (2017).
11. A. Yu. Kolesov and Yu. S. Kolesov, Relaxation Oscillations in Mathematical Models of Ecology (Am. Math. Soc.,

Providence, 1997).
12. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay,”

Izv. Math. 77 (2), 271–312 (2013).
13. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Periodic traveling-wave-type solutions in circular chains of

unidirectionally coupled equations,” Theor. Math. Phys. 175 (1), 499–517 (2013).
14. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “The buffer phenomenon in ring-like chains of unidirection-

ally connected generators,” Izv. Math. 78 (4), 708–743 (2014).
15. Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernavskii, Mathematical Modeling in Biophysics (Inst.

Komp’yut. Issled., Moscow, 2003) [in Russian].

Translated by I. Ruzanova
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 5  2018


	1. FORMULATION OF THE PROBLEM
	2. GENERAL SCHEME FOR THE STUDY
	3. ANALYSIS OF THE AUXILIARY NONLINEAR EQUATION
	4. ANALYSIS OF THE AUXILIARY LINEAR EQUATION
	5. FINAL RESULTS
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

