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1. Introduction

The deep-inelastic scattering (DIS) is commonly considered as
the best place for testing gquantum chremodynamics (QCD). Though
present DIS data are not accurate enough to check the fundamental
QCD prediction on decreasing the strong couﬁling constant « with
increasing the momentum transfer sgquared Qz, the precision of
recent BCDMS data [1-8] appears to be sufficient to guantitatively
test the specific QCD predicticns for scaling violations and to
reliably determine the QCD mass-scale parameter A. Clearly, for
this purpose a precise method of calculation of the QCD
predictions is required. Since the QCD analysis of the data
represents an extensive fit of the predictions to a large number
of experimental points, it is desirable that this method would be
fast. '

Tt is well known that these requirements are fulfilled by the
method based on Jacobi polynomial reconstruction of structure
functions (SF) suggested in ref. (9] and further studied,
developed and applied teo the analysis of experimental data in
refs. [10-13,4,5,7]. In particular, the method was used for the
QCD analysis of nonsinglet’SFs in refs. [10-12] and extended to
the singlet case in our previous paper [13].

In ref. [13), we have limited our analysis of the singlet SF
to the leading order . (LO) of perturbation theory. Here we describe
further development of the method for a complete singlet +
nonsinglet QCD analysis of SFs, including next-to-leading order
(NLO) QCD corrections. Due to a substantial contributien of the
longitudinal SF at low values of the Bjorken x and a strong
correlation between the gluen density in a mucleon and A, the
complete QCD analysis reguires a careful study of the
reconstruction accuracy and adjustment of the fit parameters. The
corresponding computer code based on the standard MINUIT program
[14] has been already applied for QCD fits of the BCDMS carbon and
hydregen data in refs. [4) and [5,7]. Also included into the code
are procedures allowing to take into account the preasymptotic
corrections to +the leading-twist massless theory: flavour
threshold corrections (similar to refs. [15,16]), target mass- and



higher twist-corrections (according to refs. [17-19]). Detailed
description of these procedures, as well as the results of
calculations of NLO-corrections to the longitudinal structure
function (according teo ref, [20]) and estimates of the
uncertainties of the QCD fits due to the preasymptotic corrections
(including the higher-order ones), may be found in ref. [21].

The rest of this paper is organized as follows. In Section 2
we briefly review the perturbative QCD predictions for DIS. The
Jacobi polynomial methed for calculation of the QCD predictions
for 5Fs is discussed in Section 3. The method is tested with the
help of the BCDMS hydrogen data in Section 4. The conclusions are
summarized in Section 5.

2, Perturbative QUD predictions for structure functions

According to the QCD factorization theorem, the S5Fs are given
as the convolution of quark, 9, and gluon, &, (partons) densities
with the coefficient functions c, (which are proportiomal to the
corrasponding cross sections of the hard process of the absorption
of virtual photon or intermediate bosons by a parton):

1
2 - dy NS X 2, ,HS 2., SI X 2, 8I 2
fk(X,Q) = { ¥ [C{k (F'Q Ay, Q") + ¢, (;»Q Ay, Q) o+

+ O (5004 (r,0%), ()

where fk, k=1, 2, 3, are related to the usual SFs by:

[
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L f2 = F‘z/x, f3 = Fg.

The functions 2° « G, 2" ana 2™ are certain flavour singlet and

nonsinglet combinations of the parton densities. TIn the case of
charged lepton-proten scat'tering, assuming m doublets of zero mass
gquarks with standard charge assignments, these combinations are
the following:



c _ 5 2 51 5 2 HS 1
A= ROx,Q7), A = IpE(x,Q7), AT = gax,Q%),

2m
=1 (g,+9) A = (u-d+U-d+c-s+C-5+.. ). (2)
. 1=1

The coefficient functions €, can be expanded in powers of the
running coupling constant aﬁ(Qa), which obeys the QCD beta
function renormalization group equation, and, in the
next-to-leading order, it is given by the implicit equation [22]:

1"%2 = ga - —in(g * ) (3)
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where ﬁD = 11 - Zf, Bl = 102 - j_f; F is the number of active

2
3
flavours. The A

is an unknown integration constant to be
determined from experiment. Often the following NLC formula is
used [23]:

2
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In the BCDMS Qz—range and at A =~ 200 MeV eq. (3’), as compared
with the equally valiag NLO expression (3), gives the as-value
lower by about 2%, and, leads to the A-value higher by _16 MeV.
Eg. (3') is used in this paper. '

The ©° dependence of the functions Al(x,Qz) is governed by
solutions of the generalized Altarelli-Parisi-Lipatov integro-
differential evelution equations, the integration kernels of which
or the splitting functions PU(X,QZ) are the probabilities of the
partonic transitions j; - 1.

The coefficient functions, splitting functions and parton
densities are not physical gquantities and depend on the
renormalization (factorization} scheme. In the following, we use
the perturbative QCD results obtained in the modified minimal
subtraction (MS) renormalization scheme [23]. In particular, the
parton densities defined in this sacheme are universal quantities
{24) and satisfy the usual momentum sum rule:



1
x>+ <> = Jdx-x[S(x,0%) + o(x,g%)) = 1. {4)
0

The convolution integrals can be transformed into
multiplications of the Mellin moments

1
frn) = J ax-x""'frx).
o

E.g., istead of eq. {1) we have:

£0n,0°%) = ¥(n,o)a%m,0%) + M(n,0")a(n, Q%) +

+ &(n,0")A%(n, @%), (%)

where the Qz—dependence of c.(n, Qe) is given by the series (the

indices denoting the HNS$S-, SI-quark and gluon contributions are
omitted):
2 2
x (Q7) o (Q7)
2, _ s (13 5 2 (2)
C(n. @) =1+ —m— B+ [ B +.. . (5)

(1}
*n 1 2
Given +the initial moments A(n,QO) at certain reference

The expansion coefficients B can be found in ref. [25].

point QE (which are not predicted by perturbative QCD}, the
solution of the Mellin transformed evolution equations is
straightforward:

NS 2 NS 2 2 NS 2
A7, Q%) = ¢.°(n, 0%, 00)al’(n, Q%)

a(n,0%)

I

P (M QA (0,07) + o (n,@%, )2 (n, @),
a'(n,@%) = o (0,0°.0)3 (0, 0%) + o,(n.0%0")A (0, Q%) (6)

The index + {-) in the NS case denctes the evolution of a crossing
even (odd) combination of parton densities, i.e. of the one
containing q1+§! (qi—c}l). The ¢~functions are determined by the
Mellin transformation of the splittind function. For example, the
nonsinglet ¢ - function has a form:
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a (Q7)
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with
NS 2 2y 1 2, _ 2, . NS
H,”(n,Q%,00) = 1+ Z2[e (Q%) - « (Q)1:2, (n),
2y(ny = (v,"(n) - v, (n)8 /8 1728,
and
2 2 as {0} « 2, (1}
¥(P,Q7) = - 2P(n,Q7) = g ¥ (n) 4 () (n) o+ .. (B)

parteon indices are omitted here and below. Similar expressions for

the singlet ¢-functions are given in egs. (2.138) - (2.143) of the
review [25]. HNote, that in the case of charged lepton-proton
scattering, the moments Al(n,Qz) are related to the ones

introduced in [25) by:
A0, 0%)=35<6(0")> , A% (0, Q% )=Ep<m(@)>, A0, QP )=Eeaa® ),

In fact, the QCD predictions in terms of  the Mellin moments
have been originally obtained with the help of the Wilson operator
product expansion (OPE);: 7+(n,Q2) at even (odd) n are just the
anomalous .dimensions of Ehe spin-n nonsinglet operators. The
anomalous dimensions have been calculated up to the
next-to-leading order in [26] and represented in a simple
analytical form in [27,28). For the gluon-gluon ancmalous
dimension we use a generally accepted result of refs. [28,29]
which slightly differs from the one of refs. [26,27).

It should be noted that in the crossing even (odd) case the
anomalous dimensions beyond the leading order ceoincide with the
moments in eq. (8) only at even (edd) n [30). To find out these
moments at any n, an‘analytical continuation shculd be performed
for even and odd n separately. As a result, the moments in eq. (7)
are related to the OPE anomalous dimensions 7:5 and 1il by the
following expressions:



(1) RS(1) {1}
v ) = e,

() o
+'Vny = 7i[l . n+(n)Ay:”'%

n.(n) = £1-¢-1)",

where Awim

= @, and, the corrections Ar:) are known to be quite
small and vanishing very fast with n (Arfu 1/n6} [30]. For this
reason the corrections are often neglected in the literature.
However, they appear to be gquite important for the Jacobi
polynomial SF-reconstruction due to factorially large coefficients
weighing the contributions of the moments. The corrections in the
crossing even (odd) case can be simply taken into account by the
following replacements in the OPE anomalous dimensions [31,32]:

(-1 -,
S,(30) ~+ (-1)M{Es,(3n) + n(n)-25(n) + C2)]),
$4(30) » (~1)7(28(3n) + n (n)[-45(n) +3 C(3)]},

Sn). » (-1 [=E(n) + mym) 5 L3 (9)

where the series § (n) and the alternating series Sm(%n), 8(n) ara
defined in [27] and {(z)} is the Riemann zeta function, &£(2) =
n’/6, C(3) = 1.20205 69031 59594.

To conclude this brief theoretical summary, the QCD
predictions for the moments of the nucleon SFs are given by eq.
(1’) together with egs. (5), (6), (8) and (9).

3. Jacobi polynomial reconstruction method

The evolution eguations allow one to  calculate the
Qz—dependence of the pérton densities A' provided they are given
at a certain reference point QOE. The densities Al(x,Qoa) are
usually parametrized on the basis of plausible theocretical
agsumptions concerming their behaviour near the end points ¥ = 0,
1, e.9.:
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xA (x,Qo) = a.x (1-x} (1+7wx),
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XA (x,Qo) = am[x (1~x) + a X (1-x) 1.
. i v .

x%(x,0%) = ax® (1-x) ° . (10)

The evolution equations can be solved and QCD predictions for
5Fs abtained with the help of various numerical algorithms
[33~35]).Although strajightforward, these methods are mot cheap in
terms of computer time and meet a problem of accumulation of the
rounding errors., Therefore a number of analytic methods has been
developed to solve these equations with a lower price. One of the
simplest and fastest possibilities is the SF reconstruction from
the QCD predictions for ite Mellin moments as given in an
analytical foxrm in eqg. (1’). The Jacobl polynomials are especially
suited for this purpose since they allow one to factor out an
essential part of the x—-dependence of the SF into the weight
function [9]. Thus, given the Jacobi moments a (0°), a structure
function f(x,Qz) may be reconstructed in a form of the se;ies

. |
x£(x,@%) = Lim xP1-x)% § a (0*)6%F(x), (11)

L] n=0

where the Jacobi polynomials
o (x) = ¥ Mra,p)x’
1=0

satisfy the orthogonality relation with the weight xB(l—x)u (see
ref. [10] for details)..- The Jacobi moments are Jjust Llineax
combinations of the Mellin ones:

a (o) =1 N, BIE(s+2,0%) (12)
]=0

Their p°-dependence thus simply follows from the QCD eqg. (17).

It was shown that a fast convergence of the series ({11} can
be achieved with an appropriate weight function. Originally, a
Qz-dependent weight function (with o = a(Qz)) was proposed [9].



Later on, it was recognized [10,12,13] that a good reconstruction
accuracy (better than 1%) can be obtained with constant values of
o and B, and with a reasonable number Nma'x of the terms retained
in the series. As expected, the choice o« » 3 and 8 = 0.5 for the
weight function parameters appears to be optimal in the nonsinglet
case. For a singlet structure functien parametrized at Qo2 = 5
Ge¥® as the singlet density in eq. (10) with M= 0.25, v = 3,
Hopa® 0 and Vepr= 8, two sets of optimal «, A values have been
found [137]: otl ® 3, B1 * 0,2 and o, e{-0.8, 3.3), Bz = -0, 8. The
relation {31% BB+1 between the twoe B-values is merely a consequence
of the polynomial expansion.

The analysis of the SF reconstructicn accuracy in ref. [13]
does not take into account a rapid Q°-evolution of the sea quarks
and gluons. Since the evolution effectively 1leads to the
appearance of a negative power of ¥ in their x-distributions [36],
we may expect decreasing the optimal f-value with @°. This is
indeed confirmed (fig. 1) by the analysis of the relative
reconstruction accuracy

H 2 Lest 2
noOF(x LQT)-F N (x ,0%) 1
geh) = (Fp o x VTR w- a1, (19)
1=1 F (x,.,Q07)
of a singlet-like test function F*, %« = 2, L. The index n

X ’
indicates that the function Ft“t was reconstructed from its first

M +1 moments. We have approximated the singlet-like structure
tunction by

test 2 3 EJ oc_'.
F'k (x,07) =_|}—:; cjx (1-x}) -, (14)
The parameters cj, aj, ﬁj, j = NS, SI and G at various values of
Q2 are given in Table 1. They have been calculated with the help
of the results of a QCD fit to the BCDMS hydrogen data. The
approximation (14) is sufficient for studying the reconstruction
accuracy, and, as the moments of its rhslare exactly known, it

avoids the necessity of the ‘"exact" solution of the evolution



Fig. 1. The relative reconstruction accuracy (13) of a singlet-
like SF Fz(x,Qz)'(defined in eg. (14) and table 1) as a function
of the weight function exponent g; calculations are performed with
@« =3, N_ =12 and ¢° = 10, 200 Gev©.

/

b 2006ev’

I N

Flg. 2. The same dependence as in Fig. 1 but as a function of the
weight function exponent & with fiwed g + 1 = 10°.



Table 1. The parameters C]’ aj, BJ in eq. (14) are given in the

1-st, 2-nd and 3-rd column for‘each Jj. The two values at each Q2
correspond to the structure functions Fa and Fl, respectively.

o? NS SI )
Gev*
10 .763 2.74 .90l | .618 3.22 .052 |-.553 12.6 .757
.034 4.44 .734 | .023 4.99 -.001 | .025 13.9 -.259
25 .723 2.88 .860 | .513 3.26 -.037 |-.195 11.7 .436
.027 4.56 .694 | .0l6 4.99 —.083 | .019 14.4 —-.340
200 .650 3.12 .790 | .378 3.37 -.173 |-.049 10.9 ,054
.017 4.76 .626 | .009 5.03 -.210 | .012 14.3 ~-.454

equations for this purpose.

It may be seen from figures 1 and 2 that an optimal choice of
the: weight function parameters « and § in the case of a
sBinglet-like structure function Fa would be a (0, 4) and B close
to -1 or B # -0,15. In the BCDMS kinematic range this choice
guarantees A;< 0.3%. This result is more than one order of
magnitude better as compared with the case of the constant weight
function (Legendre polynomial expansion). For the longitudinal
structure function, due to a substantial gluon contributien, the
reconstruction accuracy appears to be worse by an order of
magnitude (see fig. 3; the optimal values are « = 6 and B close to
-1). Such an inaccuracy 1is still acceptable since it is
compensated by a small FL—contribution to the cross section (up to
several % in a few high~-y BCDMS points). Figures 1-3 also
indicate, in <contrast with the nonsinglet «case [12)], the
sensitivity of the reconstruction accuracy to the analysed
o®-interval. Clearly, this is a consequence of a fast singlet
evolution in the low-x region.

The dependence of the reconstrﬁction accuracy on the number
N of the terms in the series and on‘the length of the IBM
computer word is displayed in fig. 4. It may be seen that the
single (double) precision is sufficient up to N = 8 (22). The
reconstruction accuracy blows up at N = 44 even if the maximal
word length of REAL*16é has been used. It also follows from fig. 4

10



200 Gev?

Fig. 3. The same dependence as in Fig. 2 but for a singlet-like
longitudinal SF FL(x,Qz).

1¢‘L " i
1

10 Noaw 0

Fig. 4. The same dependence as in Fig. 1 but as a function of the
nunbey me = M + 1 of the terms retained in the reconstruction
series at various lengths of the IBM computer word: REAL*4 (dashed
curve), REAL*8 (dashed-dotted curve) and REAL*16 (full curve); the
 and @° = 25 cev’. The dotted
curve corresponds to REAL%8 and a numerical integration of the

parameters are : o = 3, 8 + 1 = 10

x-parametrizations in egs. (10).
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that the IBM double 'precision allows one to achieve the
reconstruction accuracy by about one order better than in the case
of the single one, while further doubling of the word length is
less effective. We may conclude that the computer precision
practically limits the number of the retained terms to me< 20.
Due to rapidly increasing computer time with N . an optimum
seems to be N = 10-15. In this case, as may be seen from fig.
4, there is only a minor difference in reconstruction accuracies
corresponding to the exact and numerical calculations of the
initial meonments from egs. (10).

It should be noted [32] that the convergence of the
reconstruction series breaks at me> 10 1if the QCD moments have
been calculated neglecting the corrections to the OPE
next-to-leading anomalous dimensions arising from the
substitutions (9).

4. QCD fits to BCDHS proton data

The method has been used for QCD analysis of the BCDMS
hydrogen data [(5,6]. The initial parton densities at an = 5 gev?®
have been parametrized according to eqs. (10). The corresponding
parameters are determined (except Bees and B assumed to be zero),
together with the QCD parameter A defined in eqg. (3’), by fitting
the QCD predictions to the cross section data. Note that these
points are often given in a form of the functicn FE(X,QZ;E) which
coincides with the structure function F, calculated under the
assumption R = GL/GT = 0 (see, e.g. [1,6,37]). We compare the
cross section data with the complete singlet + nonsinglet NLO QCD
prediction éontaining both the SFs F, and F calculated in the MS
renormalization scheme. Different weight functions are used to
optimize the Jacobi reconstruction of these SFs: for F,, the
corresponding exponents o, f are treated as free parameters of the
fit, and, for FL, they are fixed at « = 6 and 8 close to -1.

The main results have already been communicated [5,7]. An

12



excellent agreement of the QCD predictions for f}(x,oz) with the
data is demonstrated in fig. 5 (see also figs. 2, 3 of ref. [7]).
The wvalues of the fit parameters are given in Table 2 for the
SI+NS analysis in a full kinematic¢ range (x > ©.06) and for the NS
analysis in a restricted domain (x >0.25). Tﬁe kinematic cuts of
ref. [7] are applied. The momentum sum rule (4) is assuned.

Note that rather large errors of the parameters of the quark
densities are due to substantial correlaticns among them. However,
these parameters, being determined essentially by the x-dependence
of the S5Fs, are practically decorrelated from the QCD mass-scale
parameter A, which measures the size of the scaling viclations.

Table 2. Averaged results of the NLO QCD fits (MMK = 10-17) to
the BCDMS hydrogen data [6]. Only statistical errors are given,

2
. ]
Fit Mes Vs Tus Fys Mgy Vs, <xq> Voea 9sea Ve AFE DOF
SI+NS| 0.5 3.5 10 1.1 0.8 4.5 0.45 13 0.17 9.0 207 258
0.2 0.2 2 *0.2 $0.1 0.6 0,08 4 :0.05 21.5 221 270

NS | 0.6 3.5 0.1 2.2 _  _ _ 198 178
*0.2 *0.3 *0.8 *0.7 *20 198

A ratio xa/DOF ~ 1 indicates not only the consistency of the
data with the QCD predictions but also a sufficient flexibility eof
the quark parametrizations in egs. (10). We have confirmed this
with the help of polynomial modifications of these
parametrizations and found that the subséquent change of A is
negligible (< 2 MeV).

In the fits we have constrained the gluon density with the
help of the momentum sum rule (4). This may be guestionable as it
requires an interpolation of the singlet gquark and gluon densities
into the unmeasured region of x < 0.06. It appears, however, when
treating both <xq> and <x.> as free parameters and assuming Mo, =
4= 0, that the results of Table 1 remain practically unchanged
{except for 50% increase of the error in'vo), and, that the sum
rule is well satisfied: I = 1.05 z 0.13.

The softness of the gluon distribution permits to neglect its
contributien in the evolution eguations at sufficiently large

13
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Fig. 5. Comparison of the BCDMS proton SF Fz(x,Qa) [5] with the
result of a complete SI+NS QCD fit {(full curves) ; the
corresponding parameters are given in Table 2.
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Fig. 6. The me-dependence of the results of the NS5 (open
circles) and the complete SI+NS {closed circles) NLO QCD fits to
the BCDMS hydrogen data [5]; Ax° = xZ(Nm) - %°(13). Typical
statistical errors are shown at Nm“ = 13.
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x-values (x > 0.3) and to determine A with the help of a more
constrained nonsinglet analysis. In an interval of x » 0.25 the
NLO nonsinglet approximation, as compared with the complete SI+NS
treatment, vields practically the same A (see Table 1 and ref.
71 -

The. N -dependence of the results of RLO fits is displayed
in fig. 6. In agreement with the analysis of the reconstruction
accuracy, the parameters of NS and SI+4N$ fits show stable
behaviour for mez 8 and N;uz 10, respectively. Note that a good
xz—stability is achieved by treating the weight function exponents
o and B in the F}—reconstruction as free parameters of the fit.
Without such a tuning of the weight function the ¥® oscillates
with N;“ by =~ 5 wunits while the fitted parameters remain
practically unchanged. Small fluctuations of A with N may be
considered as a measure of the systematic error of the method. As
is seen from fig. 6, the fluctuations are less than 2 MeV which is
negligible as compared with the statistical and systematic errors
in A.

The results of the fits well agree with the ones [7,8]
obtained by a different method (based on a numerical solution of
the evolution equations [35]), except for a small systematic
difference of ~ 10 MeV in the A-values which cannot be considered
as a significant one as compared with the errors. A part of this
difference (3-5 MevV) is due to a different treatment of the
R-function (see discussion in Section 2.4 of ref. [21]); The
results obtained by the two methods would be fully identical
provided ([12] the exact solution of the NLO equation (3) for
a.(Qz) is used instead of the equally valid NLO approximation in
eqg. {37).

5. Conclusions

We may conclude that the simple procedure suggested for the
Jacobi polynomial reconstruction of both the transverse and
longitudinal SFs is possible to make the reconstruction

uncertainties in the predicted cross section leas than a fraction

15



of %, i.e. negligible as compared with the errors of present data.

The corresponding computer code for QCD fits was successfully
tested with the help of BCDMS hydrogen data. The results of the
SI+NS (NS) fits show a stable behaviour of the physical parameters

provided the number of +the terms, N .+ retained in  the
reconstruction series is larger than ~ 10 (8). The typical time
for one full iteration in the SI+NS5 case at N, = 13 is about 30

CP seconds at the CDC 6500 computer. .

The BCDMS data [6] show a perfect agreement with the QCD
predictions on scaling violations in the SFs: xZ/DOF % 1. The QCD
nass scale paraneter AE' determined for the first time from the
full SI+NS analysis of the proton SFs, is equal to 207 * 21 MeV.

This value is in a good agreement with the one (198 % 20 MeV)
obtained from the NS fit (neglecting the gluon contribution) in
the restricted kinematic range x = 0,25. This result as well as
the large exponent Voo = 13 % 4 at (;:,vo2 = 5 GeV® confirm the
earlier observations from muon-nuclear and neutrino-nuclear
experiments that the dominant contribution to the SF F, at x >
.0.3 comes from valence guarks. The valence-quark exponents My =
0.5 £ 0.2 and Ve = 3.5 £ 0.2 fitted at Q02 = 5 geV’ agree with
the predictions based on the Regge theory and on the quark
counting rule, respectively.

Together with similar results obtained by the BCDMS
bollaboration using another method of the analysis [7,35], alse
showing an excellent agreement of the data with the QCD
predictions, the best value of AE is 205 % 22(stat) + 60(syst)
MeV, where the quoted systematical error is due to experimental
uncertainties [7}; the theoretical uncertainties are expected to
be of a similar size [21]. This is the most precise measurement of
the A from deep inelastic lepton-proton scattering experiments.

A soft gluon distribution has been obtained at QD2 = 5 gev’:
XG(x,5 GeVz) = (l—x)9 B Ls; thg exponent DG is twice the one
predicted by the quark counting rule at low Q° and found in the LO
analysis. This result indicates the importance of the NLO
corrections for the SF analysis. The above gluon parametrization
should be however considered only as an effective one in the range

0.06 < x < 0.30, where an essentially nonzero gluon contribution

16



is regquired by the measured slopes alnF‘z/aan2 characterizing the
scaling violations (see fig. 4 of ref. {7]). On the other hand,
direct photon production data are sensitive to the gluon density
in the region 0.35 < x < 0.6 [38]; they require v = 4.0 * 0.8 at
qf = 2 geV® in agreement with v, = 6.4 % 2 determined at the same

QO2 from the BCDMS hydrogen data.
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Krivikhizhin V.G. et al. E1-90-~330
Next~to-Leading-Order QCD Analysis of

Structure Functions with the Help of

Jacobi Polynomials

The method of QCD analysis of singlet and nonsinglet
structure functions, based on their Jacobi polynomial
reconstruction from perturbative QCD predictions for the
Mellin moments, is described. The accuracy and stability
of the method are demonstrated with the help of BCDMS
hydrogen data.
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