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ABSTRACT

The paper studies unsteady Navier-Stokes equations with two space variables. It shows that the non-
linear fourth-order equation for the stream function with three independent variables admits functional
separable solutions described by a system of three partial differential equations with two independent
variables. The system is found to have a number of exact solutions, which generate new classes of exact
solutions to the Navier-Stokes equations. All these solutions involve two or more arbitrary functions of a
single argument as well as a few free parameters. Many of the solutions are expressed in terms of ele-
mentary functions, provided that the arbitrary functions are also elementary; such solutions, having
relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain
model problems and testing numerical and approximate analytical hydrodynamic methods. The paper
uses the obtained results to describe some model unsteady flows of viscous incompressible fluids,
including flows through a strip with permeable walls, flows through a strip with extrusion at the
boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to sin-

gular solutions, are discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction. The stream function equation
1.1. Preliminary remarks

The Navier-Stokes equations and other hydrodynamic equa-
tions are important and fairly common in various areas of science
and engineering (e.g., see [1-4]).

Exact solutions to the Navier-Stokes and related equations con-
tribute to better understanding of qualitative features of steady and
unsteady fluid flows; these features include stability, non-uniqueness,
spatial localization, blow-up, and others. Exact solutions to the Navier—
Stokes equations allow efficient estimates of the domain of applic-
ability for simplified hydrodynamic models, including boundary-layer
equations and Euler equations.

Exact solutions with significant functional arbitrariness are of
particular interest because they may be used as test problems for
assessing the accuracy of numeric, asymptotic, and approximate
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analytical methods for solving suitable non-linear hydrodynamic-
type PDEs as well as certain model problems.

1.2. The concepts of ‘exact solution’ and ‘linearizing solution’ for non-
linear PDEs

In what follows, the term ‘exact solution’ with regard to non-
linear partial differential equations (including the Navier-Stokes
equations) is used in the following cases [5,6]:

(i) the solution is expressible in terms of elementary functions or
in closed form with definite or/and indefinite integrals;
(ii) the solution is expressible in terms of solutions to ordinary
differential equations (or systems of such equations);
(iii) combinations of the first two items are also allowed.

Apart from exact solutions, we will also be dealing with ‘line-
arizing solutions’, which are expressible in terms of solutions to
linear partial differential equations, perhaps in conjunction with
solutions (i) and (ii).

Remark 1. To find exact solutions to the Navier-Stokes, boundary-
layer, and related equations, one usually employs the classical
method for symmetry reductions [7-13] (based on the Lie group
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analysis of PDEs), direct method for symmetry reductions [14-19]
(also known as the Clarkson-Kruskal direct method), non-classical
method for symmetry reductions [20-22], and method of gen-
eralized separation of variables [5,23-29]. For some other, less
common methods, see also [30-36]. Extensive surveys of exact
solutions to the Navier-Stokes and boundary-layer equations can
be found in [5,4,37,38].

1.3. Navier-Stokes equations with two space variables. Reduction to
the stream function equation

The unsteady Navier-Stokes equations with two space vari-
ables are written as

Ui+ UUx+VUy = —Px+VAU,
Vi+UVx+VV, = —P,+1VAV,
UX+Vy=0, (1)

where t is time, x and y are Cartesian coordinates, U and V are the
fluid velocity components, P is the fluid pressure-to-density ratio,
v is the kinematic viscosity, and A is the Laplace operator.

By introducing a stream function w defined by the formulas

U=wy, V=—wy 2)

followed by eliminating the normalized pressure P, one can reduce
system (1) to a single non-linear fourth-order equation [1,2,4]:

(Aw) +wy (Aw), —Wx(Aw), = VAAW, AW = Wyx+Wyy. 3)

For steady and unsteady exact solutions to the two- and
three-dimensional Navier-Stokes equations, see the studies
[1,2,4,5,7,10,13,20,21,26,27,30,31,34,35,37-54] and references therein.
Some previous results related to the present paper will be discussed
below in Remark 3). For models and exact solutions to hyperbolic and
differential-difference Navier-Stokes equations, see [28,55-57]. A
number of steady and unsteady exact solutions to boundary layer
equations, which are related asymptotic equations derived from the
Navier-Stokes equations at large Reynolds numbers, can be found, for
example, in [1,2,5,8,9,12,14-19,22-25,32,33,58-61].

14. Generalized and functional separable solutions

The study [26] dealt with the stream function equation (3) and
presented a number of its generalized separable solutions of the
form

n n
w= Y frlogy.t) or w= " fi(X Ogy). 4)
k=1 k=1
The functions fi(x) and g, (v, t) (or fi(x, t) and gi(y)) are determined
in the analysis of the equation resulting from inserting (4) into (3).
The first solution in (4) most frequently involves the following
functions:

i =x" (m=0,1,2), fr(x)=explx),
fr@) = cos(Bx), fr(x)= sin(fx),

where 4; and f; are unknown parameters. The other set of func-
tions, g.(y,t), is determined by solving the corresponding non-
linear equations.

The books [5,6,62] detail various modifications of the method
of generalized separation of variables based on seeking solutions
of the form (4). These books give a large number of non-linear
PDEs and systems of PDEs, including the Navier-Stokes equations
and the stream function equation (3), that admit generalized
separation of variables.

This paper will present more-complex functional separable
solutions dependent, in a special way, on the original independent
variables as well as the extra variable z= g@(t)x+y/(t)y; see the
subsequent section for details.

Functional separable solutions to non-linear hydrodynamic-
type and diffusion-type equations can be found, for example, in
[18,60,63-71]. The books [5,6] describe various modifications of
the method of functional separation of variables and give specific
examples of its usage.

Remark 2. For higher-order non-linear hydrodynamic PDEs such
as Eq. (3), the direct methods of generalized and functional
separation of variables (with a preset form of exact solutions
involving arbitrary functions) usually suggest easier calculations
and result in simpler equations than the non-classical method of
symmetry reductions based on invariant surface conditions and
the method of differential constraints. Moreover, the fact that
generalized and functional solutions (as well as those obtained
using Clarkson-Kruskal direct reductions [72]) can be represented
in terms of differential constraints [73] has no practical value (see
Section 34.5 in [5]).

It is noteworthy that there is a recent modification of the
method of functional separation of variables [60,61] which has
proved to be effective for constructing exact solutions to unsteady
axisymmetric boundary-layer equations.

1.5. Boundary conditions in some hydrodynamic problems

In subsequent sections, we will give examples of using the
obtained exact solutions to construct solutions of several unsteady
model hydrodynamic problems.

In Section 4, we will look at hydrodynamic problems with
different types of boundary conditions for the velocity compo-
nents (e.g., see [2,4,38,41,50,52]).

Surface stretching or shrinking (extrusion) are described by the
conditions

U=4(t.x),

The trivial case of &(t, x) = 0 corresponds to the no-slip conditions
at a fixed surface. Functions &(t,x)=A(t) correspond to a rigid
surface moving in its own plane (along the x-axis). Unsteady
stretching or shrinking of a surface is usually modeled by a linear
function in the space coordinate, &(t,x) =A(t)x, with A> 0 corre-
sponding to stretching and A < O corresponding to shrinking.

Feeding or removing a fluid through a permeable (porous)
surface is characterized by the conditions

U=0, V=ntx) aty=0.

V=0 aty:O.

Uniform feeding or removal of a fluid through a permeable wall is
modeled by #(t,x) = B(t), with B> 0 corresponding to feeding and
B <0, to removal. The case #(t,x) = const corresponds to steady-
state feeding/removal.

2. Form of functional separable solutions. The determining
system of equations

2.1. General form of desired functional separable solutions

We look for exact solutions to Eq. (3) of the form

w =xf(t,2)+yg(t, 2) +h(t, 2)+3 at)x> + b(t)xy +1 c(t)y?,

Z=pOx+y(t)y, 5
where f=f(t,z), g=g(t,2z), h=h(t,z), a=a(t), b=>b(t), c=c(t),
@ = @(t), and y = y(t) are unknown functions to be determined in

the analysis. In the special case ¢ =0 or =0, formula (5) defines
generalized separable solutions.

Remark 3. The representation (5) is a generalization for a number
of exact solutions obtained previously. In particular, solutions of
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the form (5) with
ft.2)=fo(t), &(t2)=go(t), a=b=c=0,
@(t)=k=const, w(t)=1=const
were treated in [4,26,45,46,51].
Solutions of the form (5) with
gt,2)=h(t,2)=0, a=b=c=0, @t)=0, wt)=1
describe different flow modes near a stagnation point as well as near
a stretching or shrinking plane (extrusion processes). Such solutions
were studied, for example, in [4,26,38-41,44,47,48,50,52,54].
Solutions with
g(t,2)=0, pt)=1,

including k=0 and k # 0, were treated in [5,26].
A solution of the form (5) with

a=b=c=0, @()=k=-const,

ft.2)= —w(be(t,2), at)= 2(%[1;/2)
b(t) =2atyy, ct)=-a®), @t)=1

was described in [21].
A most comprehensive survey of known exact solutions to Eq. (3)
defined by special cases of formula (5) can be found in [5].

2.2. The determining system of equations

Substituting (5) into the stream function equation (3) gives
AX* +Bxy+Cy* +Dx+Ey+F =0, (6)

where A, B, C, D, E, and F are functional coefficients dependent on
only t and z; see the appendix for the expressions of these coef-
ficients. For Eq. (6) to be satisfied for any x and y, all functional
coefficients must be set equal to zero:

A=B=C=D=E=F=0. Q)
The first three equations, A= B = C =0, are satisfied if
@,+bp—ay =0, w,+cep—by=0. (8)

Assuming here and henceforth the three functions of time b = b(t),
@ = @(t), and y = y(t) to be arbitrary, we find a = a(t) and c=c(t)
as

ach[+bfp, cbv—vi ©)
W @

These formulas are valid if #0 and w#0. If ¢ =0 or y =0, we
have

¢=0, b=wi/y,

y =0, b= —oi/p.
Using relations (8) and making some rearrangements, one can

reduce the last three equations in (7), D=E=F =0, to the fol-

lowing non-linear system of partial differential equations for f, g,
and h:

ftzz +(5+b)fzz —ag,, 'H//(fzfzz _ﬁzzz)+(p(gfzzz _fzgzz) = V((/)z 'H//z)fzzzz’ (10)

a=0,
c=0,

¢ = c(t) is an arbitrary function;
a=a(t) is an arbitrary function.

8zt (S - b)gzz + szz + (/)(ggzzz _gzgzz) +l//(ngzz _fgzzz) = V((Pz +l//2)gzzzz: (1 1)

HL‘ZZ + (l//fzz - (pgzz)ﬁz + (¢g - l//f)ﬁzzz + a; + C/t + Zqo/tfz + 2W2gz + 2(/7f[z
+2pg, +Be* +yHg — 20y fIf ,, + 2pwg — (@* +3y*)f1g,,

—AUP* + YN @f 12+ W) = U@ + W) zzz, (12)
where
@*+y?; +
SZS(O:W’ h = (@* +y>h. (13)

The system of equations (10)-(12) will be referred to as the
determining system. It splits into a subsystem of two coupled

equations (10) and (11) for f and g as well as a passive equation
(12), which is linear in h and does not affect f or g. System (10)-
(12) involves three arbitrary functions of time, b = b(t), ¢ = @(t),
and y = w(t), with the coefficients q, ¢, and s expressed in terms of
these functions according to (9) and (13).

In what follows, we will be looking for exact solutions to the
determining system (10)-(12), which generate exact solutions of
the form (5) to the stream function equation (3). The functional
coefficients a and c in system (10)-(12) are defined by (9).

Along with Eq. (12), we will also be using the equivalent
equation

Nz +W(f e = fhz) + @(8hoz — 8. ho) + a4+ ¢+ 2(f + gy,
+ 2(§0g - l//f)((pfzz + Wgzz) + (§02 + WZ)(gfzz _fgzz)

— AU + Y @f 122+ WErr) = U@ + W) N2z, (14)

which is often more convenient in calculations.

We would like to emphasize that exact solutions to subsystem
(10), (11) generate linearizing solutions to system (10)-(12) and,
consequently, the stream function equation (3).

2.3. Formulas allowing generalizations of exact solutions to sub-
system (10), (11)

The subsystem of the non-linear coupled equations (10) and
(11) has a remarkable property which is stated below as a
theorem.

Theorem 1. Suppose that the functions f(t,z) and g(t,z) solve the
coupled system (10), (11). Then the functions

fi=ft.z+&+n, g =gt.z+5+C, f=/(Wﬂ—(ﬂC)dI» (15)

with arbitrary n=n(t) and { = {(t), also solve this system.

This theorem can be proved by direct verification.

Theorem 1 makes it possible to generalize exact solutions of
the non-linear coupled equations (10) and (11) by including
additional arbitrary functions.

3. Solutions to the determining system corresponding to
degenerate solutions of equations (10) and (11)

3.1. Solutions with f and g linear in z

Eqgs. (10) and (11) can be satisfied identically with degenerate
solutions of the form

F=f1®z+fy(),

where f; =f1(t), fo =fo(t), & =g (1), and g, =gy (t) are arbitrary
functions. Substituting (16) into (12) yields the equation

g=81(0Z+go(D), (16)

Mz + (@1 —wf )2+ @80 —Wfolhzz +(a+c+20pf  +2pg);
= V(§02+U/2)2Ezzzz, (17)

which involves seven arbitrary functions of time: ¢, y, fo, f1, g0, £1,
and b (recall that a and c are expressed in terms of ¢, y, and b by
formulas (9)). The substitution

E=hy+a+c+20f +2yg, (18)
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reduces Eq. (17) to a linear parabolic second-order equation with
variable coefficients:

S+ (pg1 —wf)z+ g0 —wfolé, =U@® +y*)e,,. (19)
This sort of equation was treated in [74]. The transformation

E=L(T.y), T=v/62(¢2+l//2)dt, r7=62+/6(l//fo—¢go) dt,

oc=o(t)=exp {/(wh —(/)godt}, (20)

reduces Eq. (19) to the classical heat equation
Cr = Z:r/;r (21)

3.2. Solutions with f and g quadratic in z

Egs. (10) and (11) admit degenerate solutions of the form
f=F0Z2 +f1(Oz+fo(t), g=8()Z°+g1(H)Z+go(D), (22)

where f; =f1(t), fo =fo(t), 1 =&1(t), and gy =g(t) are arbitrary
functions,

K
0= ¢

Ky
o gz(f)—iw (23)

2 f 2
and K is an arbitrary constant. Eq. (12) determined by the func-
tions of (22) and (23) can be reduced to the classical heat equation
[74].

It can be shown that solution (5) with f and g defined by (22) is
equivalent, up to redefining h = h(t, z), to solution (5) with fand g
defined by (16).

Remark 4. Searching for solutions of the form (5) with f and g
cubic in z eventually leads to solution (5) with f and g defined by
(16) and a modified h = h(t, z).

4. Solutions to the determining system of special form con-
sisting of two equations. Solutions to some hydrodynamic
problems

4.1. A special case where the determining system reduces to two
equations

Consider the special case of Eq. (5) with

g=0, a=b=c=0, ¢=0, yw=1,
which corresponds to the stream function
w=xf(t,y)+&(t.y). (24)

In this case, system (10)-(12) simplifies significantly to become
a system of two rather than three equations:

Foy+F3Fyy =8 yyy = tfyyyy- (25)

hgy +hyfyy —fhyyy = vhyyyy. (26)

A most comprehensive survey of exact solutions to the time-
dependent equation (25) and system (25), (26) can be found in [5]
(see also [4,26,37,38]). Below we present generalizations of some
known solutions and consider a few new problems.

Eq. (25) contains one unknown function, f, and is independent
of Eq. (26).

4.2. Two theorems on exact solutions to the determining system

The following theorem holds true.

Theorem 2. Let f =f(t,y) be a solution to Eq. (25). Then Eq. (26)
admits the exact solution

h=Cf,+A®Mf -Aty, (27)
where C is an arbitrary constant and A = A(t) is an arbitrary function.

This theorem can be verified by substituting expression (27)
into Eq. (26) and taking into account Eq. (25) and the equation
obtained by differentiating (25) with respect to y:

2
Foyy +Fy =8 yyyy = tf yyyyy-

Formula (27) allows one to construct exact solutions to Eq. (26)
whenever a solution to Eq. (25) is known.
The following, more general statement also holds true.

Theorem 3. Let f = f(t,y) be a solution to Eq. (25). Then system (25),
(26) admits the exact solution

fi=fty+B)+B,
hy =Cfy(t,y+B)+Af(t,y+B)— Ay, (28)

where C is an arbitrary constant, while A=A(t) and B=B(t) are
arbitrary functions.

In particular, given a time-invariant solution to Eq. (25), Theorem 3
allows one to construct time-dependent solutions to system (25), (26)
involving two arbitrary functions of time and an arbitrary constant.

Moreover, the above remains valid if one adds an arbitrary
function of time, which does not affect the velocity components (2),
to the right-hand side of formula (27) and the second formula in (28).

4.3. A solution to system (25), (26) rational in y

One can verify by direct substitution that Eq. (25) admits the
time-invariant solution f = 6v/y. By the formulas (27), we get the
following exact solution to system (25), (26):

C 6LA
=L 4+ T Ay
(y+B)? y+B
It involves two arbitrary functions, A=A(t) and B=B(t), and an
arbitrary constant, C; = —6vC.

6v /
f=yrgthe

4.4. Solutions of system (25), (26) involving an exponential of y.
Examples of solving some problems

System (25), (26) admits exact solutions of the form
f=ae O £ bty +c(t),
h=a(te Y + By, (29)

with the six functional coefficients a=a(t), b=b(t), c=c(t),
a=a(t), f=pt), and A=At) satisfying the following three
equations:

A —bi=0,
a’t+3ab+ac/1—ya22 =0,
a’t+2ba+aﬂ+caﬂ—ua/12 =0. (30)

The second and third equations have been rearranged using the
first one. The functions a, «, and A in (30) can be treated as arbi-
trary. Then the other three functions can be found without inte-
grals:

A
b_T C__a(a[+3ab)+1//1,
ﬂzé(fagfzbafca/brua/lz)- 3D

Below we give a few examples illustrating the usage of the
above formulas for constructing solutions to some model hydro-
dynamic problems.
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Example 1. Let us look at the special case of solution (29) with

a; ,
ﬁ, a=ao, f=-o,, (32)
where a = a(t) and o = o(t) are arbitrary functions. The expressions
(32) satisfy system (30) and follow from (31).

A=const, b=0, c=vl—

Substituting (32) into (29) and taking into account (24), we
arrive at the stream function

w:x(ae"y+u/lf%>+aae*‘yfo’[y. 33)
The velocity components are obtained by formulas (2):
U= —alxe ¥ —acle ¥ —¢|, V= —ae*’ly—y/l-k(?—:l. (34)

We set y=0 to obtain

U
a@

Uly_o= —alx—aci—o,, V\y:o=—a71//1+a/1 (35)
Now we choose the free functions a and ¢ such that

2
a— v o Caexp(vA’t) (36)

7C1 expw’t)+1 _Cl exp’t)+1

where C, is an arbitrary constantand C; is an arbitrary

constant such that C; > 0 or C; < — 1. Then the boundary relations
(35) significantly simplify to become

Uly_o=Atx, V]y,_0=0, 37)
where

_ vA?
Ci expwA*H)+1

For 1>0, formulas (34) in conjunction with (36) describe
three-parameter unsteady modes of flow in the half-plane 0 <y
< oo caused by stretching (if A > 0) or shrinking (if A <0) of the
surface y=0 according to the law (37) under special initial con-
ditions (corresponding to t=0 in Eq. (36)). In the special case
C1 = C, =0, the above formulas lead to the steady-state solution of
[41], which models extrusion. If C; =0 and C; # 0, formulas (34)
and (36) define solution [38].

Example 2. Setting a=/£=0 and substituting (29) and (31) into
(24), we obtain the stream function
A A a
_ -y 2t 3t _“t
W_x<ae +/1y+1/l 3/12 a/l)' (38)

The corresponding velocity components are expressed as
U:x(—a/le*'ly—k%),
A A d
— _qge M _Tty_ e W
V=—ae yE4 M+3&2+a/1 (39)

with arbitrary a = a(t) and 4 = A(t). Solution (39) satisfies the fol-
lowing boundary conditions as y — oo:

U—A(t)x, V- —A(t)y, where A=24/A

These conditions are used to model viscous flows about a stagnant
point (e.g., see [4,38,50,52,75]).

1°. Fluid flow onto a shrinking plane: Let us look at the special
case

(¢1y) j,o 1
-0 —_70 - 2 4
= A N /10(1//10+ )s (40)

where C > 0 and Ao > 0 are arbitrary constants. At the surface y=0,
solution (39), (40) satisfies the conditions

Uly—_o=—-Alx, V]|y_0=0, 41

where

2wWi5+3
t+C -

A(t) =

Hence, solution (39), (40) describes an unsteady flow onto a
shrinking plane.

2°. Fluid flow onto a fixed solid surface (blow-up): Let us require
that solution (39) satisfy the no-slip condition at the boundary
y=0:U|,_o=V|y,_o. This results in a system of ODEs for a = a(t)
and A= A(t):

—a/1+%/t=0, —a—w1+3j—/§+%=0.

Eliminating a = l’zﬂ/[ yields a second-order non-linear ODE for A:

N =viPA,. (42)
A one-parameter particular solution to Eq. (42) is expressed as

A=k(C;—t)~12, k=Q2v/3)" 12, (43)

where C; >0 is an arbitrary constant. The function (43) is a real
function defined on the bounded time interval 0 <t < C; and
associated with a blow-up [76,77], since A— oo as t—Cj.

Then the corresponding velocity components (39) become
A 5 2
=Ztx1—e M =L"x(1—e"¥
U=Zx(1—e ) ="sx(1—e?),

2
—y. 44
w2 (44)

A A ) A
V="ld—e M-ty ="x(1—e #)—
/12( 2y 2Kk? ( )
Solution (44) does not have singularities at the initial time t=0
and is infinitely differentiable with respect to the spatial coordi-
nates x and y. For 0 <t < C; and far away from a fixed surface, as
y— o0, formulas (44) describe a linear shear flow.
3°. Flow onto a fixed rigid surface (blow-up): A first integral of
Eq. (42) is /1}:%1/(/134—@), which is a separable equation. Inte-
grating it gives the following general solution in implicit form:
1 A+C)* V3 24

=—> +— arctan
2uvC;

—Cy
+Ch (45)
P+ CEuCE !

V3G,

where C; and G, are arbitrary constants. For the exponential terms
in solution (39) to die away, one has to assume that 4> 0. The
argument of the logarithmic function in Eq. (42) attaints its max-
imum equal to 4 at 4 = C,, while arctangent is a bounded function
that does not exceed 7 /2. Therefore, with fixed C; and C; # 0 (the
case C, = 0 was discussed above in Item 1°), time t can only assume
bounded positive values, which corresponds to a blow-up.

4.5. Solutions of system (25), (26) involving trigonometric functions
of y. Examples of solving some problems

System (25), (26) admits exact solutions of the form
f=qa(t) cos [At)y +a(t)]+b(t)y +c(b),
h = a(t) cos [A(t)y +o(t)]+5(t) sin[At)y +o(t)]+ P(t)y, (46)
with the functional coefficients a=a(t), b =b(t), c =c(t), s =s(t),
a=a(t), f=pt), A=At), and o = o(t) satisfying the following five
equations:
A—bl=0,
o,—CcA=0,
a; +3ab+val’ =0,
a; +2ba+aﬂ+ua/12 =0,
s, +2bs+vsA® =0. (47)

The last three equations have been rearranged using the first two
equations.



A.D. Polyanin, A.l. Zhurov / International Journal of Non-Linear Mechanics 79 (2016) 88-98 93

The functions 4, o, and « can be treated as arbitrary. Then the
other five functions are determined as follows:

_90 a0 [ 22 Aot
a_/13 exp( y/l dt), b_/l’ c= T
ﬁ:—%(a;+2ba+ua/12), s=;—gexp<—u//12 dt), (48)

where agp and sg are arbitrary constants.

In what follows, we give a few examples of how the above
formulas can be used to construct solutions to some model
hydrodynamic problems.

Example 3. Let us look at the special case of solution (46) with
A= const, b=c=0, a=aqEt), a=aEbtw),
s=s1E(t), E(t)=exp(—vA’t), f=-w), (49)

o = const,

where a; = ao/l’z’ and s, :soﬂfz are arbitrary constants, while @
= w(t) is an arbitrary function. The expressions (49) satisfy system
(47) and follow from formulas (48).

Substituting (49) into (46) and taking into account relations
(5) and (24), we arrive at the stream function

w = a; E(t) cos (Ay + o)[x + o(t)]+ s1E(t) sin (Ay + 6) — w;(t)y, (50)

where ay, s1, 4, and o are arbitrary constants and w = w(t) is an
arbitrary function. From formulas (2), we find the velocity com-
ponents

U = —ayAE(t) sin (Ay + 0)[x + @(t)] + 51 AE(t) cos (Ay + 6) — wy(t),
V= —aqE(t)cos(Ay+0), E(t) = exp(—vA’t). (51)

Consider the following two cases.

1°. Case 6 =0 (flow in a strip with permeable boundaries): By
setting y=0 in (51) and introducing a new function 6= 0(t)
instead of w = w(t) such that

o(t)= — / o) dt—%E(t)+C1,

we obtain

Uly—o=01), Vl],_o=—-aE®). (52)

The first condition in (52) suggests that the boundary y=0 moves
as a rigid body along the x-axis according to the arbitrary law 6(t)
(in particular, it performs periodic oscillations if @ is periodic); the
trivial case @ = 0 corresponds to a stationary boundary. The second
condition in (52) suggests that fluid is supplied or withdrawn
through the (permeable) surface, depending on the sign of a,, at a
rate exponentially decreasing with time. Solution (51) is periodic
in y. This implies that the formulas (51) describe a fluid flow in the
strip 0 <y < 2/A, with identical conditions of the form (52) set at
the boundaries for the velocity components.

2°. Case 6 =r/2 (flow in a strip with boundary extrusion): At
o=r/2 and w =0, formulas (51) become

U = —a1AE(t) cos (Ay)x —s1 AE(t) sin (Ay),

V=aEt)sin(y), E(t)=exp(—vA*t). (53)
By setting y=0, we get

U|y:0=7(11/1E(t)X, V\y:():O.

These conditions suggest that the boundary y=0 stretches if a;4
< 0 or shrinks if a;4 > 0. Solution (53) is periodic in y. It follows
that the formulas (53) describe a flow in the strip 0<y <2x/1

whose boundaries are deformed in a concerted fashion (e.g., dur-
ing extrusion).

Example 4. By setting s; =0 in (53) and renaming x=2y and U2V,
we obtain

U=aE(t)sin(x), V= —aAE(t)y cos (1x). (54)

Further, by setting y=0, we get
Uly—o=ai1E(t)sin(Ax), V], _o=0. (55)

These relations suggest that the boundary y=0 deforms, stretches
or shrinks, periodically in x, with the deformation amplitude
decaying exponentially with time.

Example 5. With a=s=#=0 and 6 =x/2 and in view of (30),
the stream function defined by (24) becomes

w=x [— asin (4y) +%y} , (56)

where A= A(t) is an arbitrary function. The corresponding fluid
velocity components are

’

U:x{—a/lcos(/ly)jt%}, V =asin (ly)—%y. (57)

The function a = a(t) is related to A through the third equation in

(47), which can be rewritten as

S

L3 A =0, (58)
1°. Flow in the first quadrant dependent on free parameters: We

require the no-slip condition at the surface y=0. This results in the

ODE

A =al’. (59)

Eliminating a from Egs. (58) and (59) yields the following second-
order non-linear ODE for A = A(t):

M+ v A =0. (60)

A first integral of this equation is /1/1'[4—}11//14 = C;. Integrating fur-
ther gives the solution
1/2

Czevkt -1
=+vk(Z2Z——— 61
4 - ((_‘zeukt + 1) ’ ( )
where C, and k> 0 are arbitrary constants (C; =1 vk* > 0). For-
mulas (61) make sense for any t > 0 as long as |C,| > 1. By letting
t— o0, we get A— + k. In view of (59), the velocity components
(57) can be written as

’ ’

U= %x [1-cos(Ay)], V= %[sin Ay)—Ay). (62)

At the surface x=0, we have U|y_o=0 and V|,_q=Vy(t, X),
with Vy(t,x) determined by the right-hand side of the second
relation in (62). It follows that the formulas (61) and (62) describe
a flow in the first quadrant (x > 0, y > 0) due to special stretching/
shrinking of the boundary x=0 and with fixed boundary y=0. The
right-hand side of the formula for V in (62) can be treated as a
superposition of linear and oscillatory extrusion.

2°. Flow in the first quadrant dependent on an arbitrary
function: Since a=a(t) and A= A(t) are connected by a single
differential constraint (58), suggesting that either can be con-
sidered arbitrary, these functions can be selected so that the
velocity components (57) at the stretching/shrinking surface
satisfy the conditions U|,_o=w(t)x and V|, _o =0, where v =
w(t) is an arbitrary function. In the special case @w = const, we get
an unsteady solution satisfying steady-state conditions of
extrusion.

4.6. Exact solutions involving hyperbolic functions of y

1°. System (25), (26) admits exact solutions of the form

f =a(t) cosh[A(t)y +o(t)]+b(t)y +c(t),
h = a(t) cosh[A(t)y +o(t)]+5s(t) sinh[A(t)y +o(t)]+S(t)y, (63)
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where 1= A(t), 6 =o(t), and a = a(t); the other functional coeffi-
cients are given by

(/,12dt> b_l; =%
ﬁ:—a(a’[-i-Zba—ua/Iz), S= —exp( /ﬂzdt> (64)

where ag and sg are arbitrary constants.
2°. System (25), (26) admits exact solutions of the form

f=a( sinh[A(t)y+ o (t)]+b(t)y +c(t),
h = a(t) sinh[A(t)y + o (t)]+5(t) cosh[A(t)y+o(t)]+ L)y,

where A= A(t), 6 =o(t), and a = a(t) are arbitrary functions; the
functional coefficients a = a(t), b = b(t), c = c(t), s = s(t), and f = (t)
are given by (64).

5. Solutions to the general determining system
5.1. Solutions involving exponential functions

System (10)-(12) admits the following exact solution involving
exponential functions:

f=kwe *+p, g=—kpe ?+5, h=pe ?+qz. (65)

The seven time-dependent functional coefficients k, p, q, 3, 6, @,
and y as well as the functional coefficient b, appearing in the
system, are to be determined in the analysis. Substituting (65) into
system (10)-(12) and collecting the coefficients of the different
exponential functions as well as the free coefficient, we arrive at
an underdetermined system of ordinary differential equations:

(a+0;=0, (66)
k', 4wk + kw (s 4+ b) + akp + kBy? — kSpy — vky (¢ +w?) =0, (67)
k@, + @k, + k(s — b) — cky + kBpy — kS@p? — vkp(p? +w?) =0, (68)

P +IPy — 9 —u(@® +y )P +k(q+Pp+y)@* +w*)=0.  (69)

In view of the relations (9), it follows from Eq. (66) that
h— 2Gpy +yy; — §0€0r’ (70)

P> +y?
where C; is an arbitrary constant.

Multiplying Eq. (67) by @ and Eq. (68) by —y and adding toge-
ther followed by rearranging with the aid of (9) and (70), we obtain
oy —y,+Ci(@? +y?) =0. (71)
In Eq. (71
p=pcosé, w=-psing

where p = p(t) and & = £(t). As a result, we get the simple equation
& = Cy. It follows that

@ =p(t)cos (C1t+Cy),

)» which relates ¢ and y;, we change to new variables:

W = —p(t)sin(Cit+C), (72)

where p = p(t) is an arbitrary function and G, is an arbitrary con-
stant. Substituting (72) into (9) and (70) yields the coefficients a, b,
and c:

a=C-Tsin@Gt4+2C), c=Cy+FtsinaCi+20y)
b:%[sinz(QtJrCz)fcosZ(C1t+C2)]— pptC05<ZC1t+ZCz) (73)

Further, it follows from Egs. (68) and (69) in view of the formulas
(72) and (73) and some rearrangements that

_ 1k .p 2
5_5<§+4;—up +/)’y/>,

1
4= [PwP®+60~pu)—p] ~ P -dy. (74)

Formulas (72)-(74) with arbitrary functions p = p(t), k = k(t),
p=p(t), and p = p(t) and arbitrary constants C; and C, determine
the general solution to system (66)-(69). The corresponding exact
solution to system (10)—(12) is given by (65), which generates an
exact solution of the form (5) to the stream function equation (3).

Remark 5. System (10), (11) admits an exact solution that involves
different exponential functions:

+pfz+y,
with the eight time-dependent functional coefficients @y, a», 3, ¥,
O1, 02, 4, and € connected by five equations

up—Py =0,

&) +a1(5+b)—ady + (B +(ar1e— 1) —vai (@® +y?) =0,

f:alez+aze‘z g:5]ez+52€_z+ﬂz+8,

Ay +az(s+b)— ady + ax(B+y)w — (26 + )9 —vaa(@* +y?) =0,

8y +81(s—b)+cay +681(e — p)p + (a1 — y 5w — 181 (> +y*) =0,
8y +82(s—b)+cay — 82(e + )@ + (Ao pi+ Y S2)yr — US2 (9> +y*) = 0.

5.2. Solutions involving trigonometric functions

System (10), (11), (14) admits the following exact solution
involving trigonometric functions:

f=kysinz+A)+p, g=—kesin(iz+)+96,
h =psin(z+A)+qcos(z+A)+71z, (75)

with the nine time-dependent functional coefficients k, p, g, 1, 4, 3,
S, @, and y involved in the solution as well as the functional
coefficient b appearing in the system to be determined in the
analysis. By substituting (75) into system (10), (11), (14) and col-
lecting the coefficients of the different trigonometric functions as
well as the free term, we arrive at the underdetermined system of
ordinary differential equations

(a+0);=0, (76)
A —Pw+6¢p =0, (77)
(ky ), + k(s + by + ake +vky (¢? +y?) = 0, (78)
(k@) + k(s — b)p — cky +vkgp(p? +y?) = 0, (79)
Qi +Dp(— Py +9)+1a(9* +y*) =0, (80)

— A — Py +89) +up(@® + ) +k(r+ P+ Sy)@® +y?) =0, (81)

whose four functional coefficients can be considered arbitrary.
Recall that the functions g, ¢, and s are expressed in terms of b, ¢,
through the formulas (9) and (13).

Eq. (76) coincides with (66) and results in the formula (70) for b.

By multiplying Eq. (78) by ¢ and Eq. (79) by —y and adding
together followed by some rearrangements with the aid of (9) and
(70), we arrive at an equation coinciding with Eq. (71). Using similar
arguments to those in Section 5.1, we arrive at the same formulas
(72) and (73) for the functional coefficients ¢, y, a, b, and c.

Substituting (72) and (73) into (78) and integrating, we obtain

pm) { / 22(0) dt} 82)

where Cs is an arbitrary constant.
Solving the remaining three equations (77), (80), and (81)
yields

A= Cy— /p[ﬂ sin(Cit+ C2)+6 cos (C1t+Cy)] dt,
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q=Cs exp(—u/p2 dt>,
r=—fp cos(C1t+Cy)+bp sin(C1t+C2)7&(p/r+ypp2)’ (83)

where C4 and Cs are arbitrary constants.

To sum up, the formulas (72), (73), (82), and (83) define the
general solution to system (76)-(81), which involves four arbitrary
functions of time p = p(t), f = p(t), 6 = (t), and p = p(t) as well as
five arbitrary constants Cy, ..., Cs. The corresponding exact solution
to system (10)-(12) is given by Eq. (65), which generates an exact
solution of the form (5) to the stream function equation (3).

Remark 6. System (10), (11) admits exact solutions of the form
f=aq cosz+ay sinz+pz+y, g=381€osz+0; sinz+uz+e,

with the eight time-dependent functional coefficients oy, @, f, 7,
01, 02, 4, and € connected by five equations

up—Py =0,
&) +a1(s+b)—ady + (a1 f— a2y )y + (a2 — fS1)@+va (9 +yw?) =0,

Ay +0aa(S+b)—abs + (a1 y + @y — (1€ + fS2)p +vaa (@ +y?) =0,
8y +61(s—b)+cay + (826 — 1)+ (a1 — Y52y + 161 (¢° +y*) =0,

8y +82(5—b)+cay — (516 +B2p)p + (ot + Y5 + 182 (¢ +y*) = 0.

5.3. Mixed steady-unsteady solutions to the determining system

A wide class of linearizing solutions to system (10)-(12) can be
obtained by setting

b=const, f=f(z), g=g®2).

In this case, the first two equations, (10) and (11), represent a
stationary system of ordinary differential equations for fand g. The
third one is a linear partial differential equation with coefficients
independent of t, which suggests that it can be analyzed using the
Laplace or Fourier transform.

@ =const, Wy =const,

6. Reduction of the determining system to fewer equations.
Order reduction of the determining system

6.1. Reduction of system (10)-(12) to two equations
Eq. (11) can be identically satisfied with

g=g,(0z+gy(t), b= % — g (t), (84)

where gy =g((t), g, =g1(), ¢ =@(t), and y =y(t) are arbitrary
functions, with the functional coefficients a and c defined by (9). In
this case, Eq. (10) becomes isolated and then system (10)—(12)
reduces to only two equations (omitted here).

6.2. Reduction of subsystem (10), (11) to a single equation

We will seek solutions to system (10), (11) of the form
f=a®ut,2)+p@1), g=ydut,2)+), (85)

with the functions a = a(t), f = p(t), y = y(t), 6 = 8(t), and u = u(t, z)
to be determined. We require Eqgs. (10) and (11) to coincide after
substituting the expressions (85). This results in a single equation
relating two functions of time:

ya, —ay,+2bay —ay* —ca? = 0. (86)

In view of (86), we get the following equation for u = u(t, z):

Utz + AUz + (5(/7 *ﬁl//)uzzz + (Y —y@)(UzlUz — Ullyy,) = l/(§02 + lllz)uzzzz
87)

with

A:%[a§+a(s+b)—ay} :%[ré+y(s—b)+ca]- (88)

Substituting (85) into Eq. (12) yields

iz +(aw —y@)uzzh, +[(r @ — oy)u+8¢ — Pz + Qul = U(@? + ) hzzzz,

(89)
where
Q[u] = (a+0); +2(ap +yy)iutz + 2(ap+yy)ug +[(3ad — fy)p?
+(@8 =3By + 25— aP)py . + 2(ap+yy)(y 9 — ay)ull,
—4U(P* + Y2 ) AP+ Y YP)llzzz. (90)

Eqgs. (87)-(89) include seven time-dependent functional para-
meters b, &, S, 7, 6, ¢, and y, which are constrained by a single
equation (86). Hence, six parameters can be considered free. By
varying the parameters appropriately, we can drastically simplify
Eqgs. (87)-(89). Let us consider two special cases.

Case 1: We set

Y =ky, o1
where k=k(t) is an arbitrary function. In this case, Eq. (87)
becomes linear; with the substitution v = u,,, it can be reduced to
a second-order parabolic equation and further to the classical heat
equation (see Eq. 4 on page 147 in [74]). In addition, if the con-
ditions (91) hold, Eq. (89) can also be reduced, with the change of
variable H = h,, to a second-order parabolic equation and further

to the heat equation with source.
Case 2: We set

y=—keo, (92)

with k=Kk(t) to be determined. If the conditions (92) hold, Egs.
(87) and (89) become

Ugzz + AUz + (5(;0 7ﬂl//)uzzz
+k(@? + ) (Urliz, — Ullzyr) = UP? + Pz, 93)

a=keg,

a=ky,

Rzz +(@+0), +k(@? +y?) B+ Sy )uzz + (8¢ — Py)h

+ k(§02 + I//Z)(quzz - UHZZZ) = l/((ﬂz + Wz)ﬁzzzz, (94)
where

k. 1 2 , , b
ﬂ:f (W"‘W) ((/)(pt+l//l//t)+ﬁ(§02+y/2)~ (95)

In view of (9) and (13), relation (86), connecting the functional
parameters, can be rewritten as

@ =) @@ +yy ) +b(@* +y?)? =0,
6.3. Reduction of system (10)-(12) to a single non-linear PDE

The following theorem holds true, which allows one to find
exact solutions to the three-equation system (10)-(12) using
solutions to a single non-linear PDE.

Theorem 4. Suppose the functional coefficients a, b, and c in (5) are
defined by (73). Then system (10)-(12) admits the exact solution

f=—kpsin&ut,2)+p,
g= —kp cos & u(t,z)+6,
h =pu(t,2)+qz+, (96)
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where k= k(t), p=p(t), f=pt), 6§=05(t), p=p(t), and r=r(t) are
arbitrary functions,

E=Cit+Cy,
1 . .
0= poalpPep 5 05 E4 5in O] +p(3 SN coshy (7

with C; and C, being arbitrary constants; the function u=u(t,z) is a
solution of the non-linear partial differential equation with variable
coefficients

K / .
Ugzr + <%+4%> Uzz +p(S €08 E+ B SiN Ny, + kp? (Uzlly, — Ullyzy) = UpP Uiz,

(98)

By varying the arbitrary functions appearing in (96)-(98)
appropriately, one can find exact solutions to system (10)-(12).

Example 6. We look for a generalized separable solution to Eq.
(98) of the form

u=Az"+Bz+C, (99)

with the functional coefficients A = A(t), B= B(t), and C = C(t) and
constant m to be determined. By substituting (99) into (98) and
performing simple rearrangements, we obtain

_bv
Tk T kp?
Formulas (96), (97), (99), and (100) define an exact solution to
system (10)-(12) with coefficients (5). This solution involves five
arbitrary functions of time: k= k(t), p = p(t), f = B(t), 6 = 6(t), and
p=p().

m=-1, A C=$(6cos E+psiné).  (100)

6.4. Order reduction of system (10)-(12)

System (10), (11) admits order reduction. Indeed, let us inte-
grate the system with respect to z to obtain

f[z+(s+b)fz 7agz+l//(f§ 7ﬁzz)+(p(gfzz 7fzgz) = V((ﬂz +l//2)fzzz +p0(t)a
(101)

8z t+ (S - b)gz +sz +l//(ngz _fgzz)"‘(p(ggzz _gg) = I/((pz +l//2)gzzz + %(t)a
(102)

where py(t) and qy(t) are arbitrary functions. The order of Eq. (12) can
be reduced with the substitution H = (¢? +y?)h,, which results in

He+ WS, — 92 ) H+(0g —wh)Hz + a4+ ¢+ 2¢.f , + 2y18, + 2¢f ,
+2p g, +[BP* +yAE—20yf1 f , +Rowg — (¢* +3w)f1g,
—4UP* + )OS 12 FWE ) = UP* + W) Hezz. (103)

Interestingly, system (101), (102) is more difficult to analyze for the
purpose of finding exact solutions than the original system (10), (11),
which contains higher-order derivatives. This is because the combi-
nations @ = ff —ff, and ¥ =g,f, —fg,, are not reduced to zero with
the simplest trigonometric or hyperbolic functions of z, unlike the
combinations @ = @, =f,f,, — ff,,, and ¥ =¥, = g,f,, — 2,,., appea-
ring in the original system.

6.5. An independent equation for a linear combination of f and g.
Reduction of system (10)-(12) to a triangular form

Let us multiply Eq. (10) by y and Eq. (11) by —¢ and add
together. By introducing the new function
O=yf-gpg,

which is a linear combination of the desired functions f and g,
taking into account the relations (8), and performing some rear-
rangements, we obtain the following independent equation for

(104)

O =0t,2):

O +50,+ 0,0, OO, = I/((ﬂz 'HI/Z)@zzzz- (105)

By expressing g from (104) via f and @, substituting it in Eq.
(10), and using the first formula in (9), we arrive at the equation
ftzz+ (Sf%>fzz Jr%@ZZ + @szz - @fzzz = l/(q)z +l//2)fzzzz’ (106)
which is linear in f.

The combination of the three equations (105), (106), and (12)
represents a triangular system in the sense that the first equation
depends on @ alone, the second depends on fand @, and the third
depends on h, f, and ©. This system can be solved consecutively,
starting from the first equation. In Eq. (12), the function g should
be expressed in terms of f and @ using (104). Any particular
solution (e.g., a stationary solution) to Eq. (105) generates a line-
arizing solution to the triangular system.

7. Brief conclusions

We have studied unsteady Navier-Stokes equations with two
space variables. The corresponding non-linear fourth-order PDE
for the stream function w with three independent variables t, x,
and y has been shown to admit functional separable solutions of
the form

w =xf(t,2)+yg(t, 2)+h(t, 2)+3 a(t)x* + b(H)xy + 3 c(t)y?,
zZ=ptx+y )y,

with the functions f(t, z), g(t, z), and h(t, z) described by a system of
three partial differential equations with two independent vari-
ables. We have found a number of exact solutions to this system,
which generate new classes of exact solutions to the unsteady
Navier-Stokes equations. All solutions involve two or more arbi-
trary functions of a single argument as well as a few free para-
meters. Many of the solutions obtained are expressed in terms of
elementary functions, provided that the arbitrary functions are
also elementary (such solutions, having relatively simple form and
presenting significant arbitrariness, can be especially useful for
solving certain model problems and testing numerical and
approximate analytical hydrodynamic methods). We have also
obtained a few new solutions to the Navier-Stokes equations that
are expressible in terms of solutions to linear PDEs. We have stated
and proved a few theorems that allow one to construct and gen-
eralize exact solutions. We have presented several examples
illustrating how the results obtained can be used to describe some
model flows of viscous incompressible fluids, including a flow in a
strip with permeable boundaries, flow in a strip with boundary
extrusion, flow onto a shrinking plane, and others. We have dis-
cussed a few blow-up flows generated by solutions with singula-
rities at finite times.

Appendix

The functional coefficients on the left-hand side of Eq. (6) are
expressed as

A= (@*+y?) @ +bp—ay)f,,,
B = (¢* +y*) (W +Cp — by)f 1y + (@ +bp— ay)g ;).
C=(@*+y*) W +Ccp—by)g,,.
D =[(2¢* +y?); +y(@* +y)f,+ b(3¢* +y?) - 2apyf,,
+ 2y — p@® +wHf, —a(@® + 3y *) + 2bpyg,,
+( @+ P =Y o+ (@AW o — U P+ WV f 1
+(@* + )@+ b — ay)hzz,
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E=[(¢*+2y?); — p(@* +wHg, — b(@? +3y) + 2copplg,, + 20y
+(@? +yH)g, +cB@? +y?) — 2bpylf ., + (@ + W)W — W )gs,
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