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Double ionization and double electron attachment equation-of-motion methods, based on linearly
approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] are formulated
and implemented. An extension of double electron attachment operator is introduced for proper account
of short-range correlation effects in states with two additional electrons. Numerical tests for set of doubly
ionized and doubly electron attached states of several molecules have shown a good agreement between
obtained explicitly-correlated results and the corresponding complete basis set limit values already at
double-f level.
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1. Introduction

Computational methods, based on the equation-of-motion
coupled-cluster methods (EOM-CC) provide a very convenient
way to calculate quantities related to differential energies, such
as ionization potentials (IP-EOM-CC) [1], electron affinities (EA-
EOM-CC) [2], excitation energies (EE-EOM-CC) [3], double ioniza-
tion potentials (DIP-EOM-CC) [4], double electron attachment
(DEA-EOM-CC) [5] and some related properties [6]. These methods
are related to the Fock-space coupled-cluster (FS-CC) formalism
whose solutions for the S(p,h) sectors of the effective hamiltonian

H ¼ e�bT bHebT , S(0,1) and S(1,0), are equivalent to those of IP-EOM-
CC and EA-EOM-CC. The former are obtained from a more compli-
cated computational procedure, so that today, the EOM route is
preferred. The correspondence, however, ensures exact extensivity
and intensivity of target ionization potentials and electron affini-
ties [7–9], despite the linear CI-like operator for the target state
in EOM-CC, because the Fock space operator is formally an expo-
nential, like in the CC ground. In the case of the S(0,2) and S(2,0),
sectors the results are slightly different between Fock-space
coupled-cluster and DIP/DEA-EOM-CCSD methods. All the EOM-
CC wave functions are pure in spin when based upon a closed shell
reference state, enabling H to be readily described in terms of spin-
free cluster amplitudes. Both FS-CC and DIP/DEA-EOM-CC are
widely used for treatment of multireference problems, like bond
breaking and calculation of excitation energies of systems with
open-shell ground states [10–12]. Also, the calculation of double
ionization potentials are immediately useful to interpret Auger
spectra. Yet another application of DIP-EOM-CC is to the ionization
spectra of doublet radicals, where a closed-shell anion can be used
as a reference state [12]. The excitation spectra of open-shell sys-
tems can be obtained from DEA-EOM-CC calculations using the
corresponding doubly ionized closed-shell reference in the under-
lying CC step [12]. The computational cost of such highly applica-
ble DIP-EOM-CCSD and DEA-EOM-CCSDmethods is proportional to
nocc3nvirt and nvirt3nocc, while the underlying CCSD scheme
scales like nvirt4nocc2, where nocc and nvirt are numbers of occu-
pied and virtual orbitals in the system. Previous studies for excita-
tion energies, electron affinities and ionization potentials have
shown a strong dependence of target quantities upon the quality
of used basis sets [13–16]. In the case of the addition and removal
of two electrons from the system, the ‘differential’ correlation
energies are very large, and the dependence of target double ion-
ization potentials and double electron affinities upon choice of
bases can be even larger than that for IPs and EAs. Indeed, in all
standard basis methods the difference between the calculated cor-
relation energy and the corresponding complete basis set (CBS)

value is proportional to ðLmax þ 1Þ�3 [17], where Lmax is the highest
angular momentum involved in the partial wave expansion. Thus,
obtaining highly-accurate converged results might be computa-
tionally costly.

The use of an explicitly-correlated approach can be an attractive
alternative. After the introduction of even simple linear-r12 [18]
geminals the convergence of the correlation energy goes as
ðLmax þ 1Þ�7 [19]. Consequently, the explicitly correlated coupled-
cluster method developed by Kutzelnigg and Noga [20] has become
an efficient and convenient approach for the calculation of
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molecular systems. Modern implementations of CC-F12 methods
use Kato’s cusp conditions for the definition of geminal amplitudes
(the so-called SP-Ansatz) [21] and utilize short-range Slater gemi-
nals, introduced by Ten-no [22]. A linearly approximated F12 cou-
pled cluster singles and doubles method known as CCSD(F12) that
retains only linear-F12 terms [23], is computationally less expen-
sive than full CC-F12, but provides similar accuracy for target cor-
relation energies. Explicitly-correlated EOM-CCSD schemes have
been presented in the literature for IPs, EAs and excitation ener-
gies, the latter by Köhn [24] in the linear response framework. Also,
the explicitly-correlated treatment of response properties has been
reported recently [25–27]. For the case of excited and electron-
attached states an extended XSP-Ansatz was introduced in order
to describe short-range correlation effects of promoted or attached
electrons [24]. Similarly, if two electrons are attached it is neces-
sary to extend the DEA-EOM-CCSD(F12) attachment operator for
the proper description of the state with two additional electrons.
In this letter we report on the formulation and implementation
of explicitly-correlated DIP and DEA-EOM-CCSD(F12) methods. In
order to estimate the accuracy of the methods developed, test cal-
culations are conducted for DIPs and DEAs of several molecules.

2. Theory

Henceforth, we denote occupied, virtual, virtuals from the com-
plete basis set and general orbitals in a given basis set as ij,. . .,
ab,. . . ;a; b; . . . and pq,. . ., respectively.

2.1. CCSD(F12) model for the neutral state

Within the coupled-cluster (CC) theory the ground-state wave
function of a neutral system has the form

W0 ¼ eð
bT 1þbT 2þ...ÞU0; ð1Þ

where bTn are regular cluster operators and U0 – any single determi-
nant reference, but frequently the ground-state Hartree-Fock deter-
minant. The details of CC theory with the corresponding working
equations have been presented in numerous articles and textbooks.
In this work the coupled cluster singles and doubles (CCSD) neutral-
state wave function will be used:

W0ðCCSDÞ ¼ eð
bT 1þbT 2ÞU0: ð2Þ

The linearly approximated explicitly-correlated extension of
CCSD, known as CCSD(F12) [23] includes an additional operator,bT 0

2 which takes care of short-range correlation effects:

W0ðCCSDðF12ÞÞ ¼ eð
bT 1þbT 2þbT 0

2ÞU0; ð3Þ

The bT 0
2 operator has the form:

T̂ 0
2 ¼ 1

2

X
ijkl

t0ijkl
X
ab

habjf 12jkliÊaibEbj �
X
ab

habjf 12jklibEai
bEbj

 !
: ð4Þ

Here bEpq denote unitary group generators,

bEpq ¼ aþp"aq" þ aþp#aq#: ð5Þ

and f 12 are Slater-type geminals[22]:

f 12 ¼ �1
c
expð�cr12Þ: ð6Þ

Geminal amplitudes are defined according to Kato’s cusp condi-

tions[21]: t0ijij ¼ 3
8 ; t

0ij
ji ¼ 1

8 ; t
0ii
ii ¼ 1

2, while all the remaining t0ijklampli-
tudes are set equal to zero.
2.2. DIP and DEA-EOM-CCSD(F12) methods

Within the DIP-EOM-CCSD(F12) approach the wave function of
a doubly-ionized state has the form:

W2þ ¼ bR2þW0ðCCSDðF12ÞÞ; ð7Þ

where bR2þ can be presented as:bR2þ ¼ bR2þ
1 þ bR2þ

2 ; ð8Þ

bR2þ
1 ¼ 1

2

X
i;j

rijfajaig; ð9Þ

bR2þ
2 ¼ 1

6

X
i;j;k;a

raijkfayaakajaig: ð10Þ

Working equations for the DIP-EOM-CCSD(F12) method can be
obtained by the projection of H onto the proper excitation
manifolds:

hUijj½H; bR2þðkÞ�jU0i ¼ xkhUijjbR2þðkÞjU0i; ð11Þ

hUa
ijkj½H; bR2þðkÞ�jU0i ¼ xkhUa

ijkjbR2þðkÞjU0i; ð12Þ
where Uij and Ua

ijk are doubly-ionized Slater determinants, index k
stands for numbering of doubly-ionized states and xk is the corre-
sponding double ionization potential. Detailed diagrammatic repre-
sentation of these equations can found in Ref. [10]. The explicitly-
correlated version of the Eqs. (11) and (12) has the same form,
but the elements of H will be augmented by terms originating from
geminals[13].There is no contribution of F(12) to the R-equations
for the DIP problem.

The DEA-EOM-CCSD wave function of the target doubly elec-
tron attached state assumes the following form:

W2� ¼ bR2�W0ðCCSDðF12ÞÞ; ð13Þ

and the bR2� operator can be written as:bR2� ¼ bR2�
1 þ bR2�

2 þ bR02�
2 ; ð14Þ

bR2�
1 ¼ 1

2

X
a;b

rabfayaaybg; ð15Þ

bR2�
2 ¼ 1

6

X
a;b;c;i

rabci fayaaybaycaig; ð16Þ
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y
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X
a;b

habjf 12jkdifayaay
ba

y
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X
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f aig

 !
:

ð17Þ

Geminal amplitudes in the Eq. (17) are fixed using the known
cusp conditions:

t0iaia ¼ 3
8
; t0iaai ¼

1
8
; ð18Þ

while all the remaining t0iajb and t0iabj amplitudes are set equal to zero.

The working equations for rab and rabci amplitudes have form:

hUabj½H; bR2�ðkÞ�jU0i ¼ xkhUabjbR2�ðkÞjU0i; ð19Þ

hUabc
i j½H; bR2�ðkÞ�jU0i ¼ xkhUabc

i jbR2�ðkÞjU0i; ð20Þ
where Uab and Uabc

i are Slater determinants with two extra elec-
trons and xk is the corresponding two-electron affinity. Detailed
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expressions for the regular version of the DEA-EOM-CCSD equa-
tions is presented elsewhere[5,11]. In the Eqs. (19) and (20) H
will contain contributions from Slater geminal in the reference

state plus extra terms, which originate from the R̂02�
2 operator.

The contribution of R̂02�
2 to the elements of H in Eq. (19) can be

presented as:

ð21Þ
while the Eq. (20) will contain the following extra terms:

ð22Þ

where Reg stands for the regular CCSD terms and the reference-
state geminal contributions to the corresponding elements of
Table 1
Double ionization potentials (in eV), calculated with regular(Reg.) and explicitly-correlate

AUG-CC-PVDZ AUG-CC-PVTZ

Reg. F12 Reg. F12

H2O
1A1 41.668 42.386 42.093 42.425
1B1 43.141 43.832 43.500 43.817

CO
1Rþ 41.715 42.163 42.046 42.371
1P 42.526 43.177 42.854 43.170

C2H2
1Dg 33.561 34.001 33.829 34.035
1Pu 38.883 39.349 39.167 39.385

C2H4
1Ag 30.913 31.273 31.218 31.382
1Ag 32.571 32.939 32.847 33.011
1B3u 35.321 35.090 35.611 35.806

CH2O
1A1 33.328 33.943 33.756 34.038
1A2 37.190 37.773 37.532 37.801
1B1 39.116 39.764 39.444 39.749

MAE 0.554 0.110 0.224 0.034
effective hamiltonian. The addition of the R̂02�
2 term provides a bal-

anced treatment of ground and doubly electron attached states
when the DEA-EOM method is based on CCSD(F12) wave functions.
Algebraic expressions for used diagrams are available at Electronic
Supplementary Material.
3. Details of implementation

The derived DIP-EOM-CCSD(F12) and DEA-EOM-CCSD(F12)
methods are implemented in the ACES III quantum chemistry soft-
ware package [28]. The underlying CCSD(F12) method uses the
B-approximation according to Ref. [29]. The necessary Slater and
Yukawa integrals are evaluated using a Rys quadrature technique
[30]. Many-electron integrals are computed with numerical
quadratures, using the Becke fuzzy cell method [31]. The atomic
grids used for the calculation of the many-electron integrals are
constructed using 50-point radial grids, and for angular integra-
tion, 194-point Lebedev-Laikov grids [32]. All two- and three-
electron integrals with the dipole moment operator are calculated
with numerical quadratures. For the implementation of F12 con-
tributions from the Eqs. (21) and (22) following intermediates
are used:

Vpq
ie ¼ pq

f 12
r12

���� ����ie� �
þ
X
k;l

hiejf 12jklihkljpqi �
X
a;b

hiejf 12jabihabjpqi�

�
X
k

ðhiekj f 12
r23

jkqpi þ ðheikj f 12
r23

jkpqiÞ ð23Þ
4. Results and discussion

Numerical tests of the new DIP and DEA-EOM-CCSD(F12) meth-
ods are conducted for several molecules using aug-cc-pVXZ basis
sets with X = D, T, and Q[33–35]. We use the Slater exponent c =
1.5 for all F12 calculations. Double ionization potentials are calcu-
lated for molecules using their equilibrium geometries, available
online [36]. The values in complete basis set limit are obtained
using the two-point scheme of Helgaker [37] and for our purpose
(45) extrapolation is done for all considered molecules. Results
for double ionization potentials, obtained with regular and
explicitly-correlated DIP-EOM-CCSD methods are given in Table 1.
d (F12) DIP-EOM-CCSD method.

AUG-CC-PVQZ AUG-CC-PV5Z CBS Exp.

Reg F12

42.256 42.410 42.319 42.385 41.3
43.649 43.796 43.707 43.768 42.0

42.188 42.349 42.248 42.311 41.7
42.995 43.150 43.053 43.114 42.2

33.938 34.035 33.981 34.026 33.0
39.282 39.383 39.326 39.375 37.6

31.316 31.392 31.357 31.378 30.1
32.942 33.016 32.975 32.992 32.2
35.716 35.804 35.754 35.773 34.0

33.904 34.034 33.959 33.986
37.668 37.742 37.721 37.797
39.590 39.732 39.647 39.675

0.095 0.031 0.044



Table 2
(in eV), calculated with regular(Reg.) and explicitly-correlated (F12) DEA-EOM-CCSD method.

AUG-CC-PVDZ AUG-CC-PVTZ AUG-CC-PVQZ AUG-CC-PV5Z CBS

Reg. F12 Reg. F12 Reg F12

F2
1Rþ

g 0.006 0.630 0.271 0.578 0.462 0.614 0.557 0.604

R(F-F) = 2.25 Å

N2
3R�

u 1.476 2.021 1.888 2.157 2.039 2.174 2.096 2.125
R(N-N) = 1.60 Å

CO
3R�

u 4.009 4.568 4.340 4.621 4.470 4.613 4.521 4.547
R(C-O) = 2.00 Å

O2þ
2

3R�
u 48.148 49.171 48.674 49.123 48.885 49.109 48.985 49.035

R(O-O) = 1.1 Å

C2
3Rþ

g 1.197 1.425 1.664 1.782 1.915 1.977 2.162 2.285

R(C-C) = 1.243 Å

194 D. Bokhan et al. / Chemical Physics Letters 692 (2018) 191–195
The corresponding values for the mean absolute error (MAE) indi-
cate significant improvement in the accuracy of obtained DIP
results: for the case of the double-fbasis, the introduction of Slater
geminals makes the MAE five times smaller then that of the regular
DIP-EOM-CCSD method, while in the triple-f case even more accu-
rate results are obtained. The errors do not exceed a few hundredth
of eV. The regular DIP-EOM-CCSD results converge towards the CBS
limit from below, while the explicitly-correlated results approach
the CBS limit from above. This phenomena has been studied before
for the case of ionization potentials and is related to the fact that
correlation and relaxation effects contribute to the overall values
of target properties with different signs. At the double-flevel some
DIP-EOM-CCSD(F12) values show irregular behavior and may be
even smaller then those in the better triple-fbases. This is related
to the balance of correlation and relaxation since those effects
are especially strong in this case. Overall, DIP-EOM-CCSD(F12) pro-
duces significantly improved results for all considered bases.

In order to assess the efficiency of the derived DEA-EOM-CCSD
(F12) approach, double electron affinities are calculated for several
molecules using the same bases as in DIP calculations. Normally
closed-shell molecules cannot attach two electrons in their equilib-
rium geometries so we use stretched configurations for our pur-
pose. Results for double electron affinities are presented in
Table 2. The DEA-EOM-CCSD(F12) results are always improved
compared to the regular DEA-EOM-CCSD approach: observed
errors with respect to CBS are usually within several tenths of an
eV. for the standard method, while the deviation of the explicitly
correlated results from CBS does not exceed several hundredth of
eV. Again, relaxation effects can be very strong for the case of dou-
bly electron attached states, so the convergence can be different
depending upon the magnitudes of correlation and relaxation in
each case. Results for the C2 molecule show only a little improve-
ment over the regular method, and, on the other hand, the differ-
ence between quadruple and quintuple-fvalues is almost 0.25 eV,
that indicates that relaxation effects dominate over correlation
and convergence to CBS is not reached. In most cases DEA-EOM-
CCSD(F12) brings significant improvement over the regular
method and can be a helpful tool for calculation of double electron
affinities.
5. Conclusions

In this work the explicitly-correlated equation-of-motion
coupled-cluster methods for double ionization potentials and dou-
ble electron affinities has been formulated and implemented. An
extended Ansatz is offered for the double electron attachment
operator that is necessary for a balanced treatment of neutral
and double-electron attached states. Numerical results for the
DIP and DEA-EOM-CCSD methods indicate slow convergence of
the corresponding results with the maximal angular momentum
of the basis sets used. The explicitly-correlated methods enables
accurate results at the double-flevel without any significant
increase in computational costs, while even more precise values
are available for triple-f. These facts makes the developed method
a helpful tool for the treatment of double ionization and double
electron attachment, whose accurate treatment is of significant
importance for the current emphasis on core ionization and excita-
tion processes encouraged by attosecond spectroscopy [38] among
other new experimental technques.
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