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a b s t r a c t

The problem of burning of high-velocity gas streams in channels is revisited. Previous treatments of this
issue are found to be incomplete. It is shown that despite relative smallness of the transversal gas velocity,
it plays crucial role in determining flame structure. In particular, it is necessary in formulating boundary
conditions near the flame anchor, and for the proper account of the flame propagation law. Using the on-
shell description of steady anchored flames, a consistent solution of the problem is given. Equations for
the flame front position and gas velocity at the front are obtained. It is demonstrated that they reduce to
a second-order differential equation for the front position. It is concluded that the mechanism of steady
flame formation becomes local in the high-velocity limit. Numerical solutions of the derived equations
are found and compared with experiment.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Flame propagation in gaseous flows with a fixed ignition point
is a process which is widely used in industry as well as in
experimental studies of deflagration. The use of flame anchors
represents the simplest means of controlling flame shape and
therefore is important from both experimental and theoretical
points of view. In fact, relative simplicity of practical realization
and importance in applications made anchored flames one of
the most popular topics in combustion science. Despite these
circumstances theoretical description of the process is far from
being complete. It would not even be exaggeration to say that
the very mechanism of formation of steady flame configurations
is not fully understood. One of the most difficult problems
here is the influence of the anchoring system on the flame, in
particular, the question of its locality. Analytical investigation of
this arduous question is so complicated that it is usually not raised
at all. Another closely related problem is the identification of
mechanisms driving the development of flame disturbances. It is
known for a long time that anchored flames may develop bulbous
structures [1], their stability properties are strongly affected by
gravity, and this influence is deeper than that in the case of
freely propagating flames [2,3], which means that the stabilizing
mechanisms in the two instances are quite different.
These issues are especially nontrivial in the case of two-

dimensional flames. This is because reduction of dimensionality
changes the long-range behavior of the Green functions, leading
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thereby to the enhanced interaction between distant parts of
the flame. Specifically, pressure distribution is determined by the
Green function of the Laplace operator, whose integral kernel
grows logarithmically with distance in two dimensions, and
therefore so does the response to a point source. This indicates that
the regions with large velocity gradients, in particular, vicinity of
the anchor, may have strong nonlocal impact on the global flame
structure.
Of particular interest are the high-velocity streams. Experi-

ments indicate that when the incoming gas velocity significantly
exceeds the normal flame burning speed, the flame front as-
sumes highly elongated shape which is often well approximated
by straight lines (V-flames). Even if the front shape is not piecewise
linear, simplifications admitted by the high-velocity limit make it
accessible for theoretical investigation. An important example is
the flame anchored in a high-velocity uniform stream in a chan-
nel. The first detailed theoretical account of this case was given by
Zel’dovich [4] who derived an integral equation for the flame front
position and obtained its numerical solutions (the main results of
this work are reproduced in the book [5]). The problem was con-
sidered independently by Scurlock [6], whose results were subse-
quently critically reviewed and clarified by Tsien [7]. In the latter
work, in particular, the main assumptions employed in the analy-
sis were identified and used to derive an integral equation similar
to that of [4].
All three works deal with the steady regime and assume the

following.
(1) For sufficiently high stream velocity, the problem can

be considered quasi-one dimensional. Specifically, the effect of
stream line curvature on the gas pressure andvelocity distributions
along the channel can be neglected. Neglecting the stream line
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Fig. 1. Schematics of the Zel’dovich–Scurlock–Tsien approach to the fast flow
burning in a channel. The curve AB is the flame front, A being the ignition point.
u1 , u2 are the longitudinal components of the fresh and burnt gas velocities,
respectively, u0 is the value of u1 far upstream; their relativemagnitudes are shown
qualitatively by the arrows of different lengths. In the Zel’dovich formulation, u1 is
a function of pressure, p, while u2 is a function of two variables—the current value
of p, and its value at the point where the considered gas element crossed the front.
Source: (Reproduced from [5].)

curvature implies that the gas pressure is taken constant in every
cross section of the fresh and burnt gas regions. Discarding also
the relatively small pressure jump across the front makes pressure
constant in every cross section of the channel.
Thus, only one of the two velocity components, viz., the one

parallel to the channel walls (longitudinal component in what
follows) is taken as a dynamical variable of the model. The fact
that in high-velocity streams, the gas velocity is nearly parallel to
the channel walls is taken in the cited works as a justification to
discard the other (transversal) velocity component.
(2) The (longitudinal) fresh gas velocity is also constant in every

cross section, both up- and downstream of the ignition point.
Neglecting its jump at the front makes the flow field continuous
everywhere in the channel.
Using the Bernoulli integral under these assumptions (with the

contribution of the transversal velocity component omitted), it is
straightforward to show that the pressure changes monotonically
along the channel, so that it can be taken as an independent
coordinate [4]. Alternatively, as such can be chosen the fresh gas
velocity which is also monotonic along the channel [7]. In either
way, the use of the mass conservation yields an integral equation
for one of the flow variables. A sketch from Ref. [5], illustrating the
above assumptions is reproduced in Fig. 1.
It should be mentioned that no attempt was made in the cited

papers to justify the approximations (1), (2) more rigorously than
outlined above. Although these approximations look naturally,
exclusion of the transversal velocity component from the list of
dynamical variables represents quite a nontrivial step. Indeed,
replacing the system of two Euler equations by the single Bernoulli
integral means that the two velocity components are completely
decoupled from each other. Considered on its own, this reduction
of the system is legitimate under the assumption of high stream
velocity. But the flow equations themselves do not constitute a
complete system of equations governing flame propagation. They
must be supplemented by the evolution equation and the jump
conditions at the flame front, as well as boundary conditions at the
channel walls. However, the two velocity components are strongly
coupled by the evolution equation: relatively small variations of
the transversal component give rise to large variations of the
longitudinal component [cf. Eq. (33) below]. At the same time, the
exclusion of the transversal component from consideration makes
this essential equation useless. In order that the evolution equation
takes its proper place in the analysis of flame propagation, it is
necessary to bring the transversal velocity component back into
consideration. This requires in turn restoration of the remaining
flow equation and the corresponding jump condition.
An important step in validating the model described above

was made by Cherny [8] who showed that the equations derived
by Zel’dovich and Tsien are asymptotically exact. More precisely,

he formulated the way the high-velocity limit should be taken in
the complete system of governing equations and demonstrated
that the resulting system reduces to an integral equation which
is equivalent to the equations derived by these authors. One
of the purposes of the present paper is to show that Cherny’s
consideration is not complete. Namely, it omits one of the
boundary conditions to be satisfied by the flow velocity in the
bulk. It turns out that enforcement of the missing condition
makes the integral equation trivial, in the sense that the only its
solution satisfying all boundary conditions is the rectilinear front
configuration with constant upstream gas velocity.
Evidently, this fact entails two conclusions. First, the assump-

tions (1), (2) mentioned above oversimplify the problem and can-
not be used to describe nontrivial flame configurations. Second,
the limiting procedure proposed in [8] is also inadequate. The aim
of the present paper is to derive the correct equation describing
flames anchored in high-velocity streams and to find its nontriv-
ial solutions. For this purpose, the on-shell description of steady
flames, developed in [9,10], will be used. The main advantage of
this description is that it describes flames in a closed form, i.e., in a
form involving only quantities defined at the flame front, without
the need to solve the flow equations in the bulk explicitly. In par-
ticular, it allows one to avoid artificial assumptions about the bulk
flow, such as the scaling laws for the gas velocity and pressure in
the high-velocity limit, which are adopted in one way or another
by the conventional approach. This description was initially given
for freely propagating flames, but it admits simple and natural ex-
tension to anchored flames. This generalization is obtained in [11].
The paper is organized as follows. The Zel’dovich–Scurlock–

Tsien approach is critically reviewed in Section 2 which starts
with a brief account of Cherny’s formulation of the high-
velocity limit. It is shown, in particular, that this formulation
reproduces the assumptions (1), (2) of Zel’dovich–Scurlock–Tsien
approach and that the only solution of the main equation,
satisfying boundary conditions, is the trivial solution. The reasons
underlying this result are identified in Sections 2.2 and 2.3. We
then go to the on-shell description in Section 3, summarizing
the main equations derived in [9,10], and their extension to
anchored flames. The reader is referred to [11] for more details
concerning inclusion of the anchoring system and its analytical
description. Sections 3.1–3.3 are counterparts of Sections 2.1–2.3.
They discuss the role of the gas pressure and indicate the place the
boundary conditions and evolution equation take in our approach.
Solution of the on-shell equations is obtained in Section 4.
Section 4.1 describes the high-velocity expansion of these
equations, which extends to curved flames the corresponding
expansion constructed in [11] for V-flames. Using this expansion, it
is shown in Section 4.2 that the main integro-differential equation
for the complex velocity reduces to ordinary differential equations.
Together with the evolution equation, these equations can be
partially integrated and further reduced to a single second-order
differential equation. This is done in Section 4.3 where numerical
solutions of the derived equations are also found. Section 5
summarizes the results of the work. The paper has an Appendix
which describes in detail transition to the case of vanishingly small
anchor dimensions within the high-velocity expansion.

2. Critiques of Zel’dovich–Scurlock–Tsien approach

2.1. Cherny’s formulation of the high-velocity limit

To beginwith, we briefly recall the results of [8] which provides
rigorous basis for Zel’dovich–Scurlock–Tsien approach. We will
employ notation appropriate for the present paper. Consider a
steady two-dimensional combustible ideal gas stream in a channel
with plane-parallel walls, ignited at a fixed point in the middle of
the channel (see Fig. 2 where only the right half of the channel is
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Fig. 2. Flame anchored in a channel in the setup of Section 2.1. Shown is the right
half of the channel, with anchor placed in itsmiddle. As is, this figure also represents
the flame anchored at the channel wall.

shown). This point (the flame anchor) will be chosen as the origin
of the Cartesian system of coordinates r = (x, y), with the y-axis
parallel to thewalls, and the initially uniform fresh gas at y = −∞.
The channel half-width will be taken as a unit of length, while the
gas velocity v = (w, u) will be measured in units of the planar
flame speed relative to the fresh gas. Then, the flow variables obey
the following equations in the bulk
∂w

∂x
+
∂u
∂y
= 0, (1)

w
∂w

∂x
+ u

∂w

∂y
= −

1
ρ

∂p
∂x
, (2)

w
∂u
∂x
+ u

∂u
∂y
= −

1
ρ

∂p
∂y
, (3)

where p, ρ are respectively the gas pressure and density. Under
the assumption that the flow is essentially subsonic, the gas can
be considered incompressible. Taking the fresh gas density as a
density unit, that of the burnt gas will be 1/θ , where θ > 1 is the
gas expansion coefficient. The flame configuration is assumed to
be symmetric with respect to the y-axis. More precisely,

f (x) = f (−x), w(x, y) = −w(−x, y),
u(x, y) = u(−x, y).

(4)

In particular, the transversal velocity component vanishes at the
symmetry axis, w(0, y) = 0, so that this formulation applies also
to a flame anchored at the channel wall, the point of view taken up
in [4].
Cherny formulated the high-velocity limit as follows. Denote

the inflow speed of fresh gas by U and introduce new (designated
with a tilde) coordinates and flow variables according to

x̃ = x, ỹ = y/U, ũ = u/U, w̃ = w, p̃ = p/U2. (5)
After that, switch to the new independent variables (ỹ, ψ), where
ψ is the stream function defined by

ρũ =
∂ψ

∂ x̃
, ρw̃ = −

∂ψ

∂ ỹ
. (6)

Then the limit U → ∞ is to be taken under the assumption that
the quantities w̃, ũ, p̃ as well as their derivatives with respect to
ỹ, ψ remain bounded. Eqs. (2), (3) and (6) thus take the form

∂ p̃
∂ψ
= 0, ũ

∂ ũ
∂ ỹ
+
1
ρ

∂ p̃
∂ ỹ
= 0,

∂ x̃
∂ψ
=
1
ρũ
,

∂ x̃
∂ ỹ
=
w̃

ũ
.

(7)

The first two equations give

p̃ = p̃(ỹ),
ũ2

2
+
p̃
ρ
= i(ψ), (8)

where i(ψ) is an arbitrary function. There are also jump conditions
to be satisfied across the flame front, which in the limit U → ∞
read

ũ+ = ũ−, p̃+ = p̃−, ψ+ = ψ−, (9)

where the minus (plus) subscript denotes restriction to the
flame front of the flow function defined upstream (downstream).
Noting that i(ψ) = const upstream (since the incoming flow
is uniform), one sees that Eqs. (8) together with the first two
Eqs. (9) exactly reproduce the assumptions (1) and (2) mentioned
in the introduction. At last, integrating the third of Eqs. (7), and
combining its solution with the relations (8), Cherny arrives at the
following integral equation for the function ỹ(ũ−):

(θ − 1)
∫ u1

1

uỹ(u)du√
θu21 − (θ − 1)u2

=
(u1 − 1)2

2
, u1 ≡ ũ−, (10)

which is equivalent to the equations derived by Zel’dovich and
Tsien. This completes the proof that the assumptions (1), (2) of
Zel’dovich–Scurlock–Tsien approach are equivalent to the limiting
procedure formulated by Cherny.
But this is not the end of the story. It turns out that the

consideration of [8] is not complete, in that it does not take into
account boundary conditions for the gas flow.Moreprecisely, these
conditions are applied only at the end-points of the flame front, but
not in the bulk. In terms of the stream function, the conditions that
the transversal component,w, of gas velocity vanishes at the walls
and at the symmetry axis read

ψ = 0 for x̃ = 0, (11)

ψ = 1 for x̃ = 1, (12)

as is seen from Eqs. (6) written in the form dψ = −ρw̃dỹ+ ρũdx̃.
Consider the flow upstream. Aswe have just seen, ũ is independent
of ψ there, so that integration of the third of Eqs. (7) yields

x̃ =
ψ

ũ(ỹ)
+ X(ỹ),

where the function X(ỹ) is to be determined from the boundary
conditions (11) and (12). Substitution gives

X(ỹ) = 0, ũ(ỹ) = 1.

Therefore, the flow turns out to be uniform in the whole region
upstream of the flame front.
We conclude that u1 = 1 is the only solution of Eq. (10)

consistent with the boundary conditions at the channel walls. In
otherwords, the limiting procedure proposed by Cherny and hence
the equivalent assumptions (1), (2) cannot be used to describe
nontrivial flame configurations.

2.2. Boundary conditions

Although not always stated explicitly, impermeability of
the channel walls (and of the symmetry axis) is assumed in
the Zel’dovich–Scurlock–Tsien approach, but is not used. As
we saw in the preceding section, enforcing this condition in
the Cherny’s formulation makes the flow trivial, leaving the
piecewise linear front configuration with constant gas velocities
up- and downstream as the only possibility. In this formulation,
impermeability of the walls and the symmetry axis is expressed in
the form (11) and (12), but these conditions are used only at the
end-points of the flame front, and at the origin. But in fact, things
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Fig. 3. Flow structure near a circular rod in the case w0 > 0 and moderate U . A
stream line crossing the flame front in the matching region is shown. For larger U ,
the point x0 is closer to the rod.

must be just the opposite: transversal gas velocity must vanish
at the channel walls and the symmetry axis everywhere except a
small vicinity of the flame anchor. Indeed, suppose for simplicity
that the flame is anchored by a cylindrical rod with circular cross-
section, Fig. 3. Then, the gas flow is significantly disturbed in
a vicinity of the rod. The slowdown of gas elements heading
the rod leads to appearance of a nonzero transversal velocity
component. This happens no matter how small the rod radius is.
If one follows the trajectory of a fresh-gas element moving near
the symmetry axis, its transversal velocity rapidly changes near
the rod from zero to some finite value at the flame front. This
means that in the limit of vanishing anchor dimensions (i.e., in the
Zel’dovich–Scurlock–Tsien setting), the gas flow is singular at the
point of the anchor location.
To be more specific, the presence of the rod in a high-velocity

stream can be described mathematically by superimposing the
incoming flow velocity v0 = (0,U) with the velocity field vd of
a dipole located at the origin:

vd =
UR2

r4
(−2xy, x2 − y2), (13)

where R � 1 is the rod radius. Indeed, if the rod is located
downstream as shown in Fig. 3, the flame front bends round the
rod, and for large U , gets close to its surface, so that the normals
to the front and the rod surface coincide. To the leading order,
the normal gas velocity is negligible in comparison with U . Hence,
velocity of the fresh gas near the rod must satisfy

(v, ν) = 0, (14)

where ν is the normal to the rod. The velocity field v0 + vd does
satisfy this condition by virtue of the identity (v0+ vd, r)|r=R = 0,
because r is normal to the rod. On the other hand, if the rod is
located upstream (i.e., flame is stabilized in the wake of the rod),
Eq. (14) is the true boundary condition obeyed by v0 + vd
identically.
The transversal velocity component induced by the rod is large

for r ∼ R and rapidly decreases with distance. At distances r such
that R � r � 1, the inner solution describing the flow near
the rod is to be matched with the large-scale outer solution we

are interested in. In particular, matching at the flame front assigns
w− a definite value, say, w0. Since the transversal velocity in the
outer flow is of the order of unity, so is w0. Let us denote by R0,
R � R0 � 1, the characteristic distance where the two solutions
are matched near the flame front. We thus have (considering the
right branch of the front, x > 0)

w−|r∼R0 = w0, (15)

wherew0 is a positive or negative number, while

w(0, y) = 0, y < −R. (16)

Finally, let us determine the scaling of R0 with U . For r ∼ R0,
y = f (x), one has y ∼ R0, x ' R, and hence

wd
−
|r∼R0 ∼

UR2

R40
RR0 =

UR3

R30
.

Therefore, w0 ∼ 1 implies R0 ∼ U1/3R. Taking this into account,
we find also

ud
−
|r∼R0 ∼

UR2

R40
R20 = U

1/3.

Neglecting U1/3 in comparison with U , we conclude that to the
leading order, the longitudinal velocity satisfies

u−|r∼R0 = U . (17)

Needless to say that the boundary behavior outlined above cannot
be described within the Zel’dovich–Scurlock–Tsien approach in
which the transversal velocity component is completely excluded
from consideration.
We have considered the simplest case of a circular rod. For

more general shapes, the specific form of the local flow is of course
different, but the hierarchy of length scales R � R0 � 1, as well
as relations (15) and (17), remain the same. These relations will be
invoked in Section 3.2.

2.3. The role of the evolution equation

The local propagation law of a flame is determined by the
so-called evolution equation which expresses the normal fresh
gas velocity, vn

−
, as a function of the flame front curvature and

space–time derivatives of the gas velocity at the front. For zero-
thickness flames, it states that the normal flame velocity relative
to the fresh gas equals that of a planar flame, i.e., is a constant.
Since the planar flame speed was taken as the gas velocity unit
(see Section 2.1), the evolution equation in this case reads simply
vn
−
= 1, or more explicitly in terms of the Cartesian velocity

components and the flame front position, y = f (x),

u− − f ′w− = N, (18)

where the prime denotes x-differentiation, and N =
√
1+ f ′2.

Curiously, this characteristic property which plays fundamental
role in the whole theory of flame propagation is not invoked in
the derivation of the Zel’dovich–Tsien equation. The reason for
this is the already-mentioned disregard of the transversal velocity
component. The point is that the transversal and longitudinal
velocity components are strongly coupled by the evolution
equation. Indeed, u− and f ′ are bothO(U), so that the two terms on
the left-hand side of Eq. (18) are of the same order of magnitude.
Hence, exclusion of w from the list of dynamical variables makes
this equation obsolete. In other words, any surface of discontinuity
with arbitrary propagation law would satisfy Eq. (10), provided
that its normal velocity is small compared to U .
The only place where Eq. (18) finds application in the

Zel’dovich–Scurlock–Tsien approach is the relation between the
flame front length and the incoming stream velocity

U = f (1), (19)
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which follows from the mass conservation condition

U =
∫ 1

0
dx
√
1+ f ′2 vn

−
≈

∫ 1

0
dxf ′ = f (1)− f (0).

Of course, this relation is independent of the particular dynamical
model employed and is valid in the high-velocity limit whatever
the structure of the incoming flow. In the Cherny’s formulation,
Eq. (18) takes the form dψ−/dỹ = 1 and after integration under
conditions (11) and (12) yields Eq. (19). These equations are not
used in the derivation of Eq. (10).

3. On-shell description of flame propagation

As shown in [9,10], the system of bulk flow equations and jump
conditions at the flame front can be reduced to a single complex
integro-differential equation relating values of the flowvariables at
the flame front (their on-shell values), so that explicit solving of the
bulk equations (which is the most difficult part of consideration)
turns out to be unnecessary. This equation reads

2 (ω−)′ +
(
1+ iĤ

) {
[ω]′ −

Nvn
+
σ+ω+

v2+

}
= 0. (20)

Here,ω = u+ iw is the complex velocity, [ω] = ω+−ω− its jump
across the front, vn

+
is the normal burnt gas velocity at the front,

σ+ is the on-shell value of vorticity produced by the curved flame,
and the operator Ĥ is defined on 2-periodic functions by(
Ĥa

)
(x)

=
1+ if ′(x)
2

−

∫
+1

−1
dη a(η) cot

{π
2
(η − x+ i[f (η)− f (x)])

}
,

(21)

the slash denoting the principal value of integral. It satisfies the
important identity

Ĥ2
= −1. (22)

The functions σ+, vn+ as well as the velocity jumps at the front,
appearing in Eq. (20), are all known functionals of the on-shell fresh
gas velocity (see, e.g., [12,13]). For zero-thickness flames,

vn
+
= θ, [u] =

θ − 1
N

, [w] = −f ′
θ − 1
N

, (23)

σ+ = −
θ − 1
2θN

(u2
−
+ w2

−
)′. (24)

Together with the evolution equation (18), Eq. (20) constitutes a
closed system of three equations for the three unknown functions
w−(x), u−(x), and f (x).
Eq. (20) describes freely propagating flames, but it can be

easily modified to take into account the presence of the rod. This
generalization is obtained in [11]:

2 (ω−)′ +
(
1+ iĤ

) {
[ω]′ −

Nvn
+
σ+ω+

v2+

}
= 2

(
ωd
−

)′
, (25)

whereωd is the complex velocity of the dipole (13). Since this field
satisfies the symmetry relations (4), the boundary condition (16)
is still met. For completeness, derivation of Eq. (25) is sketched
below. Let us assume for definiteness that the rod is located in
the downstream region.1 Then, ω− and ωd− satisfy the following

1 This configuration seems to be practically more relevant than that with an
upstream rod location, and there is a simple kinematic argument in favor of its
stability against small front displacements near the rod. However, experiments also
show existence of flames anchored in the wake. The assumption we make here is
in fact inconsequential, cf. footnote 2.

dispersion relations:(
1− iĤ

)
(ω−)

′
= 0, (26)(

1− iĤ
) (
ωd
−

)′
= 0, (27)

which express analyticity and boundedness of the functions ω(z),
ωd(z), z = x + iy, in the upstream region [9,10]. These equations
are consistent with Eq. (25) by virtue of the identity (22). Denote
ωv the complex velocity of a rotational component of the burnt
gas velocity, bounded downstream; the x-derivative of its on-
shell value is given by the second term in the braces in Eq. (20).
Because of the presence of the rod, the corresponding irrotational
component, ωp = ω − ωv , does not satisfy the usual dispersion
relation. Rather, one has(
1+ iĤ

) (
ω
p
+ − ω

d
+

)′
= 0,

because the function (ωp+ − ωd
+
) is analytical downstream and

bounded. Substituting here ωp+ = −ωv+ + ω− + [ω], using Eqs.
(26), (27), and noting that ωd

+
= ωd

−
yields Eq. (25).

We will now consider the problem of anchored flame propaga-
tion within the on-shell description in the light of the discussion
in Section 2.

3.1. The role of gas pressure

It was already mentioned in the Introduction that specifics of
the two-dimensional problem make the issue of flow nonlocality
especially nontrivial. The region near the rod is characterized
by large velocity gradients; therefore, it significantly affects the
pressure field far apart from the rod. Indeed, pressure can be found
from the Poisson equation:

∆p = −ρ (∇(v∇)v) .

Since the Green function of the Laplacian is proportional to ln r ,
the flow near the anchor can be expected to have strong nonlocal
influence on the flame structure. It is one of the advantages
of the on-shell formulation that it reveals the completely
subordinate role pressure plays in describing flame dynamics. In
fact, the variable p does not appear in Eq. (20). In particular,
no assumptions such as that contained in the point (1) of the
Zel’dovich–Scurlock–Tsien approach, or the scaling prescription
(5) of the Cherny’s limiting procedure, are needed in the on-
shell description. This circumstance weakens the above argument
concerning nonlocality of the anchor impact.

3.2. Strategy of solving Eq. (25). Boundary conditions

We are concerned with the situation where the rod radius, R, is
much smaller than the channel width and interested in the large-
scale front structure, i.e., its structure at distances large compared
to R (the outer solution). We observe, first of all, that the presence
of the rod is described simply by adding the dipole field to Eq. (20),
which is noticeable only in a small vicinity of the origin. This fact
indicates that despite the pressure argument given in the preced-
ing section, the detailed flow structure near the rod may be actu-
ally unimportant. This would mean that the rod can be considered
point-like and would greatly simplify account of its influence on
the global flame structure. Considerations of the subsequent sec-
tions will show that this is indeed so in the high-velocity limit.
Namely, it turns out that Eq. (20) reduces in this limit to an or-
dinary differential equation. This fact naturally opens the follow-
ing way of solving Eq. (25): we consider this equation at x’s such
that r & R0 and extract the leading terms of the high-velocity
expansion. Detailed analysis reveals that for such x’s, the dipole
contribution is negligible, so that Eq. (25) reduces to Eq. (20).
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Exclusion of the region near the rod implies that this equation
must be supplemented by an auxiliary condition at a point x0 cor-
responding to thematching region r ∼ R0 (see Fig. 3). Since Eq. (20)
is complex and involves only quantities defined at the flame front,
it requires two real auxiliary conditions expressed in terms of on-
shell quantities. As such, we take the relations (15), (17) in which
the numbers w0,U play the role of parameters specifying given
large-scale solution. In the limit R → 0, these relations take the
form

w−(0+) = w0, (28)

u−(0+) = U, (29)

with the understanding that the functions w−(x) ≡ w(x, f (x)),
u−(x) ≡ u(x, f (x)) represent solutions of Eq. (20) considered on
the semi-open interval x ∈ (0, 1], and the quantities w−(0+),
u−(0+) are their right limiting values for x → 0. Furthermore,
taking the limit R→ 0 leads obviously to the following condition
for the function f (x)

f (0) = 0. (30)

Finally, there is also the usual condition of vanishing of w at the
wall x = +1,

w−(+1) = 0. (31)

If a solution of Eqs. (18) and (20) satisfying the above conditions
is found for x ∈ (0, 1], then the rule (4) gives it on the semi-open
interval x ∈ [−1, 0) as

f (x) = f (−x), w−(x) = −w−(−x), u−(x) = u−(−x),
(32)

in particular, w−(x) satisfies w−(0−) = −w0 so that this function
has a discontinuity at x = 0.
In connection with the above procedure of finding the large-

scale solution, the following circumstance should be emphasized.
We are able to formulate this procedure in a closed form, without
the need to construct the local solution near the rod explicitly,
just because Eq. (20) relates only functions defined at the flame
front. This would not be possible in the conventional approach
based on explicit solving the bulk equations. Indeed, as we saw
in Section 2.2, the transversal velocity of gas elements moving
near the rod rapidly changes from zero to some finite value at
the flame front. Therefore, if we were to construct a bulk outer
solution satisfying thematching and boundary conditions (15) and
(16), this solution ought to describe the rapid change of w from
zero to w0 ∼ 1 over a distance ∼ R0. Clearly, this behavior
of w violates the main boundedness assumption of the Cherny
formulation. Therefore, this assumption can be adopted only if the
dipole field can be completely neglected. But then w0 vanishes,
and the solution becomes trivial. In our approach, on the contrary,
only longitudinal velocity induced by the dipole is negligible in the
matching region, but not the transversal.
At last, it is worth noting that the parameters w0,U specifying

the large-scale solution are independent of each other. This fact
becomes evidentwhenwenote that instead of the rodwith circular
cross-section we might use a more complicated cylindrical shape.
Then, for the same value of U , matching of the inner and outer
solutions would give a different value for w0. We conclude that
the large-scale solutions form a two-parameter family. This is in
contrast with the Zel’dovich–Scurlock–Tsien approach where the
single parameter U completely determines the solution. We will
return to this point in Section 4.3.

3.3. Evolution equation

Having formulated the outer problem in a closed form, we
may now note that the experimentally observed anchored flames

usually have fairly smooth, highly elongated front configurations.
Hence, neglecting the small regions near the rod and the channel
walls where finite-thickness effects are only important, we can use
the evolution equation in the simplest form (18) applicable to zero-
thickness flames. Restricting ourselves again to the right half of the
channel where the front slope is positive, and taking into account
that f ′ = O(U) [cf. Eq. (19)] this equation can be rewritten as

u− = f ′(w− + 1), x > 0, (33)

the correction term being of the relative order O(1/U2).
It should be emphasized that neglecting the regions near the

rod and the channel walls makes boundary conditions for the
function f ′(x) itself unnecessary. Such conditions are only needed
in establishing the detailed structure of these regions, which is
directly related to the fact that the finite-front-thickness effects
determining this structure are described by equations of higher
differential order. This means that the slope of the function f (x)
describing the outer solution is to be considered large everywhere
on the semi-open intervals x ∈ (0, 1] and x ∈ [−1, 0). The
points x = ±1 are included here by continuity, but not the point
x = 0 which represents the true singularity of the flow, where f ′ is
undefined.

4. Solution of Eq. (20) in the high-velocity limit

4.1. Large-slope expansion of theH-operator

Nonlocality of the steady flame structure is encoded entirely
in the operator Ĥ , and of major importance is the fact that this
operator greatly simplifies in the high-velocity limit. For large U ,
the front slope is also large, |f ′| ∼ U , so the argument of cotangent
in Eq. (21) has large imaginary part for almost all values of the
integration variable. Therefore, one can write

cot
{π
2
(η − x+ i[f (η)− f (x)])

}
≈ −iχ(|η| − |x|), (34)

where χ(x) is the sign function,

χ(x) =
{
+1, x > 0,
−1, x < 0.

This approximation is valid for all η except two small regions near
η = ±|x| . More precisely, taking into account that for real a1,2,

cot(a1 + ia2) = −i
e(a2−ia1) + e−(a2−ia1)

e(a2−ia1) − e−(a2−ia1)
= −iχ(a2)+ O

(
e−2|a2|

)
,

we see that Eq. (34) holds true, with an exponential accuracy,
everywhere except

η : |η| ∈ (|x| − δ, |x| + δ),

where δ = O(1/U).
To develop an asymptotic large-slope expansion of Ĥ , let us use

the condition U � 1 to choose a real ε > 0 such that

ε � 1, Uε � 1. (35)

Then, the integral in Eq. (21) can be rewritten, for x > 0, as

−

∫
+1

−1
dη a(η) cot

{π
2
(η − x+ i[f (η)− f (x)])

}
= −i

[∫
−x−ε

−1
+

∫ 0

−x+ε
+

∫ x−ε

0
+

∫
+1

x+ε

]
dη a(η)χ(|η| − x)

+

[∫
−x+ε

−x−ε
+−

∫ x+ε

x−ε

]
dη a(η)

× cot
{π
2
(η − x+ i[f (η)− f (x)])

}
. (36)
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Note that in the last term on the right-hand side of Eq. (36), only
one of the two integrals is defined in the principal value sense.
As such, it is proportional to a′(x). It is not difficult to see that
contributions of this kind give rise to terms of the order 1/U2. This
is because expanding the function a(η) around x brings in an extra
small factor (η − x). Below, we will need Ĥ expanded up to O(1)-
terms, so the principal-sense integral can be neglected. The other
integral can be evaluated as follows, using continuity of a(η),∫
−x+ε

−x−ε
dη a(η) cot

{π
2
(η − x+ i[f (η)− f (x)])

}
= −ia(−x)

∫
+ε

−ε

dy coth
{
π f ′(x)
2
y+ π ix

}
= −ia(−x)

2
π f ′(x)

ln shy |+π f
′(x)ε/2+π ix

−π f ′(x)ε/2+π ix .

In view of (35), ln shy can be replaced, with the exponential
accuracy, by y and −y at the upper and lower integration limits,
respectively. Taking into account also that for x → 0+, arg(shy)
gains (−π)when y runs the integration domain, we find

ln shy|+π f
′(x)ε/2+π ix

−π f ′(x)ε/2+π ix = π i(2x− 1).

On the other hand, replacing the cotangent in the last term in
Eq. (36) by the sign function gives zero with the same accuracy∫
−x+ε

−x−ε
dη a(η)χ(|η| − x) = a(−x)

∫
+ε

−ε

dη χ(η) = 0.

Using these formulas in Eq. (36), and thenputting it in Eq. (21) gives
finally(
Ĥa

)
(x) = (f ′(x)− i)

∫
+1

0
dη
a(η)+ a(−η)

2
χ(η − |x|)

+ ia(−x)(2|x| − 1)+ O
(
1
U

)
. (37)

This result is written in the form applicable to negative as well
as positive x, which can be verified by noting that iĤ is invariant
under the combined operation of coordinate inversion (x → −x)
and complex conjugation, as is seen from Eq. (21). In particular,
the asymptotic action of Ĥ on the derivative of a function a(x)
continuous at the origin and satisfying a(−1) = a(+1) is(
Ĥa′

)
(x) = (f ′(x)− i) {a(−|x|)− a(|x|)}

+ ia′(−x)(2|x| − 1)+ O
(
1
U

)
, (38)

where the prime denotes derivative of the function with respect
to its argument, a′(y) = da(y)/dy. It turns out that the formula
(38) remains valid even if the conditions a(0−) = a(0+), a(−1) =
a(+1) are notmet. In particular, a(x) can bediscontinuous at x = 0,
so that its derivative is singular at the origin. This important fact is
proved in the Appendix.
Formula (38) was derived for x’s where the front slope is large,

i.e., for all x except small regions near the rod and the channel
walls, where the front curvature is large. Neglecting these regions
as we did before, we can say that Eq. (38) is valid on the semi-open
intervals x ∈ (0,+1] and x ∈ [−1, 0) (Section 3.3).
The following comments concerning the structure of Eqs. (37)

and (38) will be useful in subsequent applications. First, it is seen
that the result of the action of Ĥ depends essentially on parity
properties of the function a(x), namely, Ĥa = O(U), if a(x) is
even, and Ĥa = O(1), if it is odd. Second, it should be noted that
although the identity Ĥ2

= −1 is valid whatever the shape of the
flame front, in particular, in the large-U limit, it cannot be verified
using the expression on the right-hand side of Eq. (37), already
because the composition of its leading termwith theundetermined
remainder O(U) ◦ O(1/U) = O(1).

4.2. Reduction to the system of ordinary differential equations

4.2.1. Equation for the transversal velocity
Wego over to proving the results announced in Section 3.2. First

of all, let us determine the orders of various terms in Eq. (25)within
the high-velocity expansion. As we know, u− = O(U), f ′ = O(U),
and Eq. (33) tells us that w− = O(1). Using these estimates in the
expressions (23) and (24) shows that

[u] = O(1/U), [w] = O(1), u+ = O(U), w+ = O(1),
v+ = O(U), Nσ+ = O(U2).

Therefore, one has for the braces in Eq. (25)

Re
{
[ω]′ −

Nvn
+
σ+ω+

v2+

}
= O(U),

Im
{
[ω]′ −

Nvn
+
σ+ω+

v2+

}
= O(1).

Since Re{. . .} is an odd function of x, while Im{. . .} is even, it
follows from the formula (37) that the leading term in the real
part of iĤ{. . .} is O(U) . Thus, the real part of the left-hand side
of Eq. (25) is O(U). At the same time, as we saw in Section 2.2,
the real part of the dipole velocity field is O(1) in the matching
region, and negligible far apart from the origin. Therefore, to the
leading order of the high-velocity expansion, the real contribution
to the right-hand side of Eq. (25) can be omitted. However, things
are quite different for the imaginary contribution. In this case,
the above estimates and formula (37) show that both sides of
Eq. (25) are O(1). Moreover, expansion of Ĥ only up to O(1)-terms
is actually insufficient for the purpose of extracting the imaginary
part. Indeed, the undetermined remainder in Eq. (37) isO(1/U) and
may contain real as well as imaginary parts. Since the argument
of the H-operator is O(U), this remainder gives rise to terms of
the order O(1/U) · O(U) = O(1). These two complications can
be overcome by resorting to Eq. (26) which expresses potentiality
of the upstream flow and can be considered as a consistency
condition for Eq. (25). Repeating literally the above reasoning,2 one
sees that the real part of Eq. (26) can be consistently extractedwith
the help of the expansion obtained in the previous section. Namely,
using the formula (37) yields

u′
−
(x)− f ′(x){w−(|x|)− w−(−|x|)} + u′−(−x)(2|x| − 1) = 0,

or, since u′
−
(−x) = −u′

−
(x),w−(−x) = −w(x),

w−(|x|) = (1− |x|)
u′
−
(x)

f ′(x)
. (39)

By the construction, this equation is valid for x ∈ [−1, 0) ∪ (0, 1].
In particular, we see that the boundary condition (31) is satisfied
automatically.
Thus, we proved that in order to find the large-scale solutions

of Eq. (25), it is sufficient to consider Eq. (20).

4.2.2. Equation for the longitudinal velocity
Turning back to extracting the real part of Eq. (20), we have to

consider the questionwhether the contribution of the small region
near the rod can be neglected. As we saw in the preceding section,
the dipole field on the right-hand side of Eq. (25) is negligible for
x 6= 0. Yet, this does not settle the question, because integration on
the left-hand side is over all x including zero. The first term in the

2 For a flame stabilized in the wake, Eq. (26) is replaced by
(
1− iĤ

)
(ω−)

′
=

2
(
ωd
−

)′ [11]. This makes no difference for the present analysis, as the dipole field is
negligible on the same grounds as in Eq. (25).
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Fig. 4. Near-the-rod behavior of Q (x) according to the true local solution (solid
line) and extrapolated large-scale solution (broken line).

braces is a derivative, so that we can use Eq. (38) to find out how
it is transformed by Ĥ . Note that since this term is the derivative
of a function discontinuous at x = 0, it contains contribution
proportional to the Dirac δ-function. Indeed, one has from Eq. (23)

[ω] =
θ − 1
N
− if ′(x)

θ − 1
N
≈ −i(θ − 1)χ(x),

and hence,

[ω]′ = −2i(θ − 1)δ(x)

(validity of Eq. (38) under such circumstances is proved in the
Appendix). As to the second term in the braces, it also contains
a derivative factor, namely, (u2

−
+ w2

−
)′ coming from σ+, but

this time this is a derivative of an even function. However, it
would be premature to conclude that this term does not contain
a δ-contribution. The point is that (u2

−
+ w2

−
)′ is multiplied by

ω+ whose imaginary part is an odd function. Let us trace the
development of the quantity Q = Nw+σ+/v2+ near the rod, Fig. 4.
At thematching point x = −x0 on the left of the rod, v2+ is large but
changes slowly, while w+ = −w0 + (θ − 1) = O(1). Also, if the
bulk transversal velocity of the fresh gas is not too large, and |v+|
increases away from the anchor (pressure normally drops down
along the stream), thenw+ > 0, (v2+)

′ < 0, and so

0 < Q = −w+
(θ − 1)
2θ

(
ln v2
+

)′
= O(1). (40)

|σ+| increases near the rod as the result of gas slowdown caused
by the rod, and for |x| . R, Q becomes O(U/R). Here, the front
curvature is large, and the zero-front-thickness expression (40) can
be used only for a rough estimate. It shows that Q is negative in
this region, because w+ < 0, and σ+ > 0. Next, Q rapidly turns
into zero at x = 0, because both w+ and σ+ vanish at the origin.
For positive x . R, Q is again a negative O(U/R) quantity, since
w+ > 0, σ+ < 0. At larger x’s its modulus decreases, and Q
becomes O(1) at the matching point x = x0 on the right of the
rod. From the large-scale point of view, this behavior means that Q
contains a term qδ(x), with a negative coefficient q. The exact value
of q can be found, of course, only if the inner solution is known.We
arrive at the conclusion that the expression in the braces in Eq. (20)
can be written as

−iq̄δ(x)+ (θ − 1)
(u2
−
+ w2

−
)′ω+

2v2+
,

where q̄ = q+2(θ−1), and it is understood that the δ-contribution
is excluded from the second term. In other words, this term is
calculated using the functions u−, w+ etc. that describe the outer
solution.
Now, taking into account that v2

+
= v2

−
+ θ2 − 1, using

Eqs. (37) and (38), and extracting the real part of Eq. (20) gives,

to the leading order,

u′
−
(x)(1+ α|x|)−

q̄
2
f ′(x)−

α

2
f ′(x)

×

∫ 1

0
dη
u′
−
(η)

u−(η)
[w−(η)− α]χ(η − |x|) = 0, α ≡ θ − 1.

This equation involves the unknown parameter q̄. To get rid of it,
we divide the equation by f ′, and then differentiate it with respect
to x. The result is the following ordinary differential equation:

d
dx

[
u′
−
(x)

f ′(x)
(1+ α|x|)

]
+ α

u′
−
(x)

u−(x)
[w−(x)− α] = 0. (41)

Together with Eqs. (33), (39) it constitutes the system of three or-
dinary differential equations for the three functions u−(x), w−(x),
f (x). Evidently, this system requires three initial conditions which
are Eqs. (28)–(30).

4.3. Reduction to a single differential equation. Numerical solutions

Introducing an auxiliary function

ϕ =
u′
−

f ′
=
du−
df
,

the system (33), (39) and (41) can be rewritten as an ordinary
differential equation for ϕ(x):

d
dx
[ϕ(1+ αx)]+ αϕ

(1− x)ϕ − α
(1− x)ϕ + 1

= 0, x > 0. (42)

The initial condition forϕ follows from Eqs. (28) and (39):ϕ(0+) =
w0. We note also that the functions u−(x), f (x) are related by a
simple algebraic equation. One has from Eqs. (33), (39)

u− = (1− x)u′− + f
′, (43)

or
[(1− x)u−]′ + f ′ = 0.
Integrating this equation, and using the initial conditions (29) and
(30), gives
f = U − (1− x)u−. (44)
Finally, combining Eqs. (43) and (44) one can express ϕ in terms
of f

ϕ(x) =
U − f (x)

(1− x)2f ′(x)
−

1
1− x

.

Substitution of this expression into Eq. (42) leads to a second-order
differential equation for the front position. The corresponding
initial conditions follow from Eqs. (28)–(30), and (33):

f (0) = 0, f ′(0+) =
U

w0 + 1
. (45)

It is worth mentioning that for given w0, θ , solutions correspond-
ing to different values of U are similar. Namely, rescaling
f (x) = UF(x), u−(x) = Uu(x) (46)
brings the above equations to the form

F(x) = 1− (1− x)u(x), ϕ(x) =
1− F(x)

(1− x)2F ′(x)
−

1
1− x

,

F(0) = 0, F ′(0+) =
1

w0 + 1
, (47)

no longer involving U . Numerical solutions of Eqs. (42) and (47)
for various w0 and θ are plotted in Figs. 5–7. They have the
following common general features. First of all, the function f (x)
is monotonic in all cases (in each of the two channel halves),
as was assumed throughout our consideration. Second, flames in
which the fresh-gas flow diverges near the rod (w0 > 0) are
convex towards the incoming flow, while those with convergent
fresh-gas flow (w0 < 0) are concave (recall that we deal here
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Fig. 5. Numerical solutions for the flame front position and fresh-gas velocity at the front in the case w0 = 1 and various gas expansion coefficients: θ = 3 (dot), θ = 5
(dash), θ = 7 (dashdot), and θ = 9 (solid). Variables are rescaled according to (46).

with the large-scale solutions, characterized by distances r & R0
from the rod; of course, w is always positive for 0 < x < R).
Numerical analysis shows that in the latter case, solutions with
the given negativew0 exist only for sufficiently small values of the
gas expansion coefficient. For example, solutions with the fairly
small value w0 = −0.1, some of which are shown in Fig. 6,
disappear at θ ≈ 3.5. On the contrary, solutions with w0 > 0
are characterized by the monotonic increase of u− as one moves
from the rod to the wall. This is what is normally observed in
experiments. Solutions withw0 < 0 are anomalous in this respect,
as u− decreases away from the rod. They are most likely unstable.
The overall velocity rise in patterns with w0 > 0 is worth noting:
it rapidly increases with θ and is quite substantial for real flames
(θ = 5 ÷ 10). Note also the qualitative change in the behavior
of the transversal velocity component with increasing θ . A related
quantity of practical importance is the pressure drop along the
front, which is readily found from the Bernoulli integral for the
upstream flow. Fig. 8 shows P(x) ≡ (p∞ − p−(x))/ρU2 (p∞ is
the gas pressure far upstream) for flames with θ = 6 and various
w0. The overall pressure drop, through the combustion region,
P(1), is seen to increase with w0, i.e., it is larger for the larger
front curvature. In the Zel’dovich–Scurlock–Tsien approach, this
quantity depends only on θ , and P(1) ≈ 5 for θ = 6.
At last, solutions with w0 = 0 are trivial. One has indeed

ϕ(0+) = 0, and Eq. (42) tells us that also ϕ′(0+) = 0.
Repeated differentiation of this equation then shows that all higher
derivatives of ϕ also vanish, i.e., ϕ(x) ≡ 0. Hence, u− = const = U ,
and Eq. (44) gives f (x) = Ux, x > 0. In the light of the discussion
given in Sections 2.2 and 3.2, it is natural that the case w0 = 0
reproduces the result of Section 2.1. It should be mentioned finally

that the trivial solutions are of little physical interest: As shown
in [11], they are unstable.
In order to verify the developed theory, detailedmeasurements

of the flame front position and the fresh gas velocity at the front
are needed. Unfortunately, despite considerable importance of
the problem, it is difficult to find in the literature experimental
data on 2D confined fast flow burning. In particular, neither of
the papers [4,7,8] makes comparison with observations. I have
available only a photograph of propane–air flame anchored in
a 2.5 cm-wide channel, shown in Figure 10 of the report [1].
Although the fuel/air ratio was not specified for this case, one
can infer from the other experiments reported in [1] that rich
propane–air mixtures were used, with the fuel/air ratio 0.05 ÷
0.08. Under the normal conditions, these have θ close to 7. In the
absence of detailed velocity data, it remains nothing better than to
choose w0 so as to obtain the best fit of the flame front position
read off from the photograph. For this purpose, the photograph
was digitized using the DigitizeIt software.3 Fig. 9 compares the
obtained data with the numerical solution of Eqs. (42), (47) for
w0 = 4. The shown experimental curve for the rescaled front
position (dashed line) is the mean of two curves corresponding
to the two wings of the flame. The difference between them
is up to 10% of the mean value, and so is the error due to
uncertainty in the ordinates of the front end-points, so that 10% is
the estimated experimental accuracy. To estimate accuracy of the
numerical solution, we note that the large-slope expansion of Ĥ

3 DigitizeIt is a registered trademark of the Bormisoft corp.
http://www.digitizeit.de.
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Fig. 6. Same forw0 = −0.1: θ = 2 (dot), θ = 3 (dash), and θ = 3.5 (solid).

brings in a relative error O(1/U2) [cf. Eq. (38)]. The dimensionless
inflow velocity found from the photograph is U ≈ 10. Since
the H-operator itself does not involve other large parameters
such as θ , accuracy of its expansion can be estimated as 1%. By
the same reason, this is also the accuracy of Eqs. (33), (39), and
therefore, Eq. (44). But derivation of Eq. (41) uses the stronger
condition U � θ , the relative error being proportional to (θ/U)2.
At the same time, U only slightly exceeds θ in the experiment
under consideration, so that theoretical results are expected to
be significantly less accurate than experimental. Despite this
expectation, Fig. 9 indicates that the theory actually agrees with
observations within the experimental accuracy. It should be kept
in mind, however, that this comparison is incomplete because of
the lack of the gas velocity data.

Locality, matching, and initial conditions
The fact that the system of governing equations has been

reduced to an ordinary differential equation implies that the
mechanism of steady flame formation becomes local in the high-
velocity limit. More precisely, behavior of the flame front slope
and gas velocity in an infinitesimal vicinity of a given point is
determined by their values at this point. This proves, in particular,
the conjecture made in Section 3.2 that the flame structure far
from the rod (the outer solution) is independent of the flow details
near the rod. The only piece of information needed to determine
the outer solution, which depends on the near-the-rod flow, is
the value of w0 which together with U parameterizes the family
of outer solutions. This corresponds to the fact that the ordinary
differential equation for F(x), obtained by combining Eqs. (42) and
(47), turned out to be of the second order, thus demanding two
initial conditions [cf. Eq. (47)].

This locality is also the reason why we did not have to look
for the inner solution, and in particular, to perform the matching
procedure explicitly. In fact, the results of this laborious procedure
would be to a large extent useless, because changing the shape
of the anchor changes the value of w0, as do the finite-front-
thickness effects which are important in the region near the
rod and are different for different mixtures. Taking w0 as an
independent parameter thus allows us to avoid explicit matching.
In this connection, it should be emphasized that although the initial
conditions are most naturally imposed at the origin, any point
x0 ∈ (0, 1)would go for this purpose. For instance, the knowledge
of the front position and its slope at any point determines the flame
configuration completely.

5. Conclusions

The results obtained in this paper provide consistent descrip-
tion of steady flames anchored in high-velocity gas streams in
channels. Given the values of the incoming flow velocity and its
transversal component near the anchor, the formulas derived in
Section 4.3 allow simple determination of the flame front shape
and on-shell gas velocity. A practically more convenient may be
‘‘geometrical’’ parametrization using the ordinates of the front
end-points and its slope at the origin, which is related to the initial
one by Eqs. (19) and (45).
A remarkable fact revealed by the above analysis is that the

flame structure in a high-velocity gas flow obeys an ordinary
differential equation. In other words, this structure turns out to
be local in the usual sense: behavior of the flame front slope
and gas velocity in an infinitesimal vicinity of a given point is
determined by their values at this point. The sole role of the
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Fig. 7. Same for θ = 5 and variousw0:w0 = 0.1 (dot),w0 = 0.5 (dash),w0 = 2 (dashdot), andw0 = 4 (solid).

Fig. 8. Numerical solutions for the dimensionless pressure drop P = (p∞ −
p−)/ρU2 in the case θ = 6 and various w0: w0 = 0.1 (dot), w0 = 0.5 (dash),
w0 = 1 (dashdot), andw0 = 2 (solid).

anchor is to provide an initial condition. This result answers the
question as to the nature of nonlocality of the anchor influence
on the flame structure: although detailed structure of the flame
holder is immaterial for the properties of the large-scale flow,
the flow distortion it causes ultimately determines the whole
flame configuration. We saw in Section 2.2 that mathematically,
the presence of an anchor with vanishingly small dimensions
signifies existence of a singularity in the bulk flow solution.
The failure to recognize this fact is what makes it impossible
to consistently describe nontrivial flame configurations within
the Zel’dovich–Scurlock–Tsien approach. Actually, this defect is

Fig. 9. Left: photograph of the propane–air flame, right: front position determined
from the photograph on the left (dashed line), and calculated using Eqs. (42) and
(47) for θ = 7,w0 = 4 (solid line).
Source: Reproduced from Figure 10 of [1].

inherent to this approach as it discards the transversal gas velocity,
while the role of this component is crucial in describing the anchor
impact.
Finally, the role of vorticity in the formation of curved flame

patterns is to be emphasized. It is described by the second term
in the braces in Eq. (20), while the first term (the complex velocity
jump) corresponds to a purely potential contribution. As we saw
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in Section 4.2.2, the latter falls off from the equations describing
the large-scale flame structure. In view of this, one can say that
formation of the steady flame pattern in a high-velocity stream
is governed by the vorticity generated in the curved flame front.
Therefore, it cannot be described within potential-flow models
such as suggested in [14].
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Appendix. Extension of Eq. (38) to discontinuous functions

If the function a(x) in Eq. (38) does not satisfy conditions

a(0+) = a(0−), a(+1) = a(−1), (A.1)
its derivative is singular at x = 0,±1, and the integration by parts
used in the transition from Eq. (37) to Eq. (38) is ambiguous. We
recall that the functions describing the true flame configuration
are actually smooth and periodic, and hence satisfy the conditions
(A.1), whereas discontinuities arise as the result of simplified
description. Therefore, in order to correctly evaluate the integral,
one has to turn back to the exact formula (21) in which all the
functions involved are smooth, and apply it to a function A(x)
satisfying (A.1),whose behavior near the rod or channelwalls looks
discontinuous from the large-scale point of view. More precisely,
A(x) is supposed to vary rapidly for |x| < R� 1 and near thewalls,
but normally on the intervals x0 < x < 1− x0 and−1+ x0 < x <
−x0, where it coincides with a(x). Here the positive numbers R, x0
are such that R < x0 � 1; they have the same meaning as in
Section 3.2. Thus,
lim
R→0
A(x) = a(x).

(R → 0 implies that x0 also goes to zero.) Neglecting the anchor
dimensions means that the action of Ĥ on a′ is defined as(
Ĥa′

)
(x) = lim

R→0

{(
ĤA′

)
(x)
}
. (A.2)

To find out how Ĥ acts on the derivative of A(x), we replace a by A
in Eq. (37) and integrate the right-hand side by parts(
ĤA′

)
(x) =

1+ if ′(x)
2

−

∫
+1

−1
dη A′(η)

× cot
{π
2
(η − x+ i[f (η)− f (x)])

}
=
1
2
d
dx
−

∫
+1

−1
dη [1+ if ′(η)]A(η)

× cot
{π
2
(η − x+ i[f (η)− f (x)])

}
. (A.3)

The boundary terms vanish here because the integral kernel is 2-
periodic, and A(x) satisfies A(−1) = A(+1), by the assumption.
The function a(x) is allowed to have only a finite jump, as is
the slope, f ′, of the limiting form of the front. Therefore, the last
integral in Eq. (A.3), in which all functions are replaced by their
limiting expressions, is well-defined, representing a continuously
differentiable function for all |x| ∈ (0, 1). Thus, we can write

lim
R→0

{(
ĤA′

)
(x)
}
=
1
2
d
dx
−

∫
+1

−1
dη [1+ if ′(η)]a(η)

× cot
{π
2
(η − x+ i[f (η)− f (x)])

}
,

it being understood that f in the integrand is used in its limiting
form.
Next, we go over to the large-slope limit. The right-hand side

of the last equation can be evaluated then in exactly the same
way as we obtained Eq. (37). Comparison with Eq. (36) shows that

the role of the function a(η) in this equation is now played by
[1 + if ′(η)]a(η), the only difference being that the large factor f ′
comes from the integrand, rather than from the pre-integral factor
in Eq. (21). Taking this into account, we readily find(
Ĥa′

)
(x) =

1
2
d
dx

[∫ 1

0
dη
{
a(η)[f ′(η)− i]

+ a(−η)[f ′(−η)− i]
}
χ(η − |x|)− ia(−x)(2|x| − 1)

]
= −f ′(|x|)χ(x) {a(|x|)− a(−|x|)} + iχ(x) {a(|x|)+ a(−|x|)}
− 2ia(−x)χ(x)+ ia′(−x)(2|x| − 1).

Using the obvious identities f ′(|x|)χ(x) = f ′(x), χ(x){a(|x|) +
a(−|x|)− 2a(−x)} = a(|x|)− a(−|x|), we finally obtain(
Ĥa′

)
(x) = (f ′(x)− i) {a(−|x|)− a(|x|)} + ia′(−x)(2|x| − 1),

which is exactly Eq. (38), as was to be proved.We also observe that
the result is independent of the particular choice of A(x).
Moreover, it turns out that this formula is valid not only on

the open intervals x ∈ (−1, 0) ∪ (0, 1), but in the whole channel
domain x ∈ [−1,+1], if the derivatives of functions discontinuous
at x = 0 are understood in the sense of distributions. Having in
mind possible future applications, let us prove this fact. Note, first
of all, that if a(x) is discontinuous at x = 0, i.e., a(0+) − a(0−) ≡
[a]0 6= 0, then for the function b(x) = a(x) − [a]0χ(x)/2, one
has [b]0 = 0, so that Eq. (38) is valid for b(x). Writing a(x) =
b(x) + [a]0χ(x)/2, we see that since Ĥ is a linear operator, it is
sufficient to prove the above statement only for the sign function.
Let X(x) be its smooth approximation. Take a test function φ(x),
i.e., a smooth function that slowly varies for x ∼ R and integrate it
with Eq. (A.3) over interval −∆ 6 x 6 +∆, where ∆ is such that
R� ∆ < 1. We get∫ ∆

−∆

dxφ(x)
(
ĤX ′

)
(x) =

1
2
−

∫
+1

−1
dη [1+ if ′(η)]X(η)

×

[
φ(∆) cot

{π
2
(η −∆+ i[f (η)− f (∆)])

}
− φ(−∆) cot

{π
2
(η +∆+ i[f (η)− f (∆)])

}]
−
1
2

∫ ∆

−∆

dxφ′(x)−
∫
+1

−1
dη [1+ if ′(η)]X(η)

× cot
{π
2
(η − x+ i[f (η)− f (x)])

}
.

All integrals on the right are well-defined in the limit R → 0, so
that X(η) can be replaced by χ(η). Then the η-integrations are
readily done because the primitives are ln sin{·}. For example,

−

∫
+1

−1
dη[1+ if ′(η)]X(η) cot

{π
2
(η −∆+ i[f (η)− f (∆)])

}
=
2
π

[
−

∫
+1

0
−

∫ 0

−1

]
d ln sin

{π
2
(η −∆+ i[f (η)− f (∆)])

}
= 2[f (1)− i] − 4[f (∆)− i∆],

where it is taken into account that the front slope is large for
|η| � R. A simple calculation gives∫ ∆

−∆

dxφ(x)
(
ĤX ′

)
(x) = −2iφ(0)− 2

∫ ∆

−∆

dxφ(x)[f ′(x)− i].

Finally, sinceφ(x) is independent of R, using the definitions of Dirac
δ-function and (A.2), the limit of this equation for R → 0 can be
written as∫ ∆

−∆

dxφ(x)
(
Ĥχ ′

)
(x) = −2i

∫ ∆

−∆

dxδ(x)φ(x)

− 2
∫ ∆

−∆

dxφ(x)[f ′(x)− i],
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which in view of arbitrariness of φ(x) yields(
Ĥχ ′

)
(x) = −2iδ(x)− 2[f ′(x)− i].

By virtue of the relations χ ′(x) = 2δ(x), |x|δ(x) = 0, understood
in the sense of distributions, this is just Eq. (38) for a = χ.
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