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Abstract. Kaplansky asked about the possible images of a polynomial f in
several noncommuting variables. In this note we consider the case of f a Lie

polynomial with constant term 0, and coefficients in an algebraically closed
field K. We describe all the possible images of f in M2(K) and provide an
example of f whose image is the set of trace zero matrices without nilpotent

nonzero matrices. We provide an arithmetic criterion for this case.

1. Introduction

A Lie polynomial is an element of the free Lie algebra in the alphabet {xi : i ∈
I}, cf. [Ra, p. 8]. Intuitively, a Lie polynomial is a sum of Lie monomials αh, where
h is a Lie word, built inductively: each xi is a Lie word of degree 1, and if h1, h2

are Lie words of degree d1 and d2, then [h1, h2] is a Lie word of degree d1 + d2.
This note consists of two parts. In the first part we describe the motivation.

In the second part we classify the possible images of Lie polynomials evaluated
on 2 × 2 matrices and consider the 3 × 3 case. This note is the continuation of
[BeMR1], in which we considered the question, reputedly raised by Kaplansky, of
the possible image set Im f of a polynomial f on matrices. See [BeMR1] for the
historical background.

In [BeMR1] the field K was required to be quadratically closed. In [M] results
were provided over real closed field and arbitrary fields.

Here we are interested in images of Lie polynomials on matrices. Since [f, g]
can be interpreted as fg − gf, in this way we can identify any Lie polynomial
with an associative polynomial; hence, any set that can arise as the image of a Lie
polynomial also fits into the framework of the associative theory, so our challenge
here is to find examples of Lie polynomials which achieve the sets described in
[BeMR1, BeMR2, BeMR3]. As we shall see, this task is not as easy as it may seem
at first glance.

1.1. A Group theoretical problem and its relation with the Lie theoretical
problem.

Let w be an element of the free group of m letters x1, x2, . . . xm−1 and xm. Given
a group G, we consider the map fw,G : Gm → G corresponding to the word w. This
map is called a word map, which for convenience we also notate as w instead of
fw,G. There is a group conjecture (see [BeKP, Question 2] for the more general
case):
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Conjecture 1. If the field K is algebraically closed of characteristic 0, then the
image of any nontrivial group word w(x1, . . . , xm) on PSL2(K) is PSL2(K).

Remark 1. Note that if one takes the group SL2 instead of PSL2, Conjecture 1
fails, since the matrix −I + e12 does not belong to the image of the word map
w = x2.

Example 1. When CharK = p > 0, the image of the word map w(x) = xp

evaluated on PSL2(K) is not PSL2(K). Indeed, otherwise the matrix I + e12 could
be written as xp for x ∈ PSL2(K). If the eigenvalues of x are equal, then x = I +n
where n is nilpotent. Therefore xp = (I + n)p = I + pn = I. If the eigenvalues of
x are not equal, then x is diagonalizable and therefore xp is also diagonalizable, a
contradiction.

Remark 2. There is a connection between questions related to matrix groups
and Lie theoretical questions. Consider the group generated by matrices of the
type gi = I + ai, where ai are generic matrices with trace 0. Let w be the word
map, then w(g1, . . . , gs) = I + g + R, where g ̸= 0 is the sum of all terms of
minimal nonzero degree. Therefore (according to [Zu] for 2× 2 matrices over field
of characteristic not 2, and [Ze] for n×n matrices where CharK = p > p(n)), g is a
Lie polynomial. This fact lets us show that a free pro-p group cannot be embedded
to the group of n× n matrices if p ≫ n (if n = 2 and p > 2 it is proved by Zubkov
in [Zu]). Hence Lie algebraical problems play an important role for investigation of
the possible images of word maps.

Lemma 1 (Liebeck, Nikolov, Shalev, cf. also [G] and [Ban]). Imw contains all
matrices from PSL2(K) which are not unipotent.

Proof. According to [Bo] the image of the word map w must be Zariski dense in
SL2(K). Therefore the image of trw must be Zariski dense in K. Note that trw is a
homogeneous rational function and K is algebraically closed. Hence, Im (trw) = K.
For any λ ̸= ±1 any matrix with eigenvalues λ and λ−1 belongs to the image of
w since there is a matrix with trace λ + λ−1 in Imw and any two matrices from
SL2 with equal trace (except trace ±2) are similar. Note that the identity matrix
I belongs to the image of any word map. �

However the question whether one of the matrices (I+ e12) or (−I− e12) (which
are equal in PSL2) belongs to the image of w remains open. We conjecture that
I + e12 must belong to Imw. Note that if there exists i such that the degree of
xi in w is k ̸= 0 then we can consider all xj = I for j ̸= i and xi = I + e12.
Then the value of w is (I + e12)

k = I + ke12 and this is a unipotent matrix since
CharK = 0, and thus Imw = PSL2(K). Therefore it is interesting to consider
word maps w(x1, . . . , xm) such that the degree of each xi is zero.

This is why Conjecture 1 can be reformulated as follows:

Conjecture 2. Let w(x1, . . . , xm) be a group word whose degree ni each xi is 0.
Then the image of w on G must be PSL2(K), where G = GL2(K)/{±1}.

One can consider matrices zi =
xi√
det xi

and note that w(z1, . . . , zm) = w(x1, . . . , xm).

For Conjecture 2 we take yi = xi − I. Then we can open the brackets in

w(1 + y1, 1 + y2, . . . , 1 + ym) = 1 + f(y1, . . . , ym) + g(y1, . . . , ym),
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where f is a homogeneous Lie polynomial of degree d, and g is the sum of terms of
degree greater than d. Therefore it is interesting to investigate the possible images
of Lie polynomials, whether it is possible that the image of l does not contain
nilpotent matrices. Unfortunately it is possible. More general questions about
surjectivity of word maps in groups and polynomials in algebras are considered in
[BeKP].

2. The images of homogeneous Lie polynomials on Mn(K) and sln

As mentioned in the introduction, the situation for Lie polynomials is consid-
erably more intricate than for regular polynomials, for the simple reason that the
most prominent polynomials in the theory, the standard polynomial sn and the
Capelli polynomial cn are not obviously Lie polynomials. Even the case where a
Lie polynomial takes on only zero values, i.e., is a PI, is nontrivial, although it has
been studied in two important books [Bak, Ra].

In order to pass to the associative theory, we make use of the adjoint algebra
adL = {ada : L → L : a ∈ L} given by ada(b) = [a, b]. Note that

dimK adL < dimEndK L = (dimK L)2.

Also, it is well-known that the map a 7→ ada defines a Lie algebra homomorphism
L → adL.

Remark 3.
ada1 . . . adan(a) = [a1, . . . , [an−1, [an, a]] . . . ].

In this way, any “ad”-monomial corresponds to a Lie monomial, and thus any “ad”-
polynomial f(adx1 , . . . , adxn) gives rise to a Lie polynomial f(x1, . . . , xn, xn+1) tak-
ing on the same values, and in which xn+1 appears of degree 1 in each Lie monomial,
in the innermost set of Lie brackets.

Conversely, we have:

Proposition 1. Suppose f(x1, . . . , xn, xn+1) is a Lie polynomial in which xn+1

appears in degree 1 in each Lie monomial. Then f corresponds to an ad-polynomial
taking on the same values on L as f .

Proof. In view of Remark 3, it suffices to show that any Lie monomial h can be
rewritten in the free Lie algebra as a sum of Lie monomials in which xn+1 appears
(in degree 1) in the innermost set of Lie brackets. This could be done directly by
means of the Jacobi identity, but here is a slicker argument.

Write h = [h1, h2], and we appeal to induction on the degree of h. If xn+1 appears
say in h2. If h2 = xn+1 then we are done since h = [h1, xn+1] corresponds to adh1 . In
general, by induction, h2 corresponds to adh3(xn+1), so [h1, h2] = adh1(adh3(xn+1))
corresponds to adh1

adh3
(xn+1) = ad[h1,h3](xn+1), as desired. �

Example 2. For any Lie algebra L of degree n, let t = 2(n2 − 1) and take
f = st(adx1 , adx2 , . . . , adxt)(xt+1). considering the adxl

as linear operators from sln
Then st is a PI of adL, via the Amitsur-Levitzki theorem. Therefore, f is a con-
sequence of the 0-operator on xt+1 and equals 0, and is a multilinear lie identity
of L.

The same argument works for any Lie algebra L of dimension n. Then

f = ct(adx1 , adx2 , . . . , adxt)(xt+1),

where t = (n2 − 1)2 is a Lie identity.
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This gives rise to the following question:

Question 1. What is the minimal degree of a Lie identity of sln?

Even the answer for n = 2, given in [Ra, Theorem 36.1], is difficult.

Proposition 2. sn and cn cannot be written as Lie polynomials for n odd.

Proof. It is enough to show this for sn, since it is a specialization of cn. In view of
Proposition 1 it is enough to find some matrix specialization of sn which is nonzero
on Mn(F ) when we specialize x1 to a scalar matrix. But this is clear: For n odd
we specialize xi 7→ ei−1,i for 2 ≤ i ≤ n; then

sn(I, e1,2, . . . , en−1,n) = ne1,n.

�
Example 3. (i) s2 itself is a Lie polynomial.

(ii) s4 is not a Lie polynomial. Indeed, it vanishes on sl2, which has dimension
3, but every Lie identity of sl2 has degree ≥ 5, by [Ra, Theorem 36.1].

Here is a computational proof. We have 15 multilinear Lie monomials
of degree 4, namely 1

2

(
4
2

)
= 3 of the form

[[xi1 , xi2 ], [xi3 , xi4 ]] (1)

and 2
(
4
2

)
= 12 of the form

[[[xi1 , xi2 ], xi3 ], xi4 ]. (2)

But

[[xi1 , xi2 ], [xi3 , xi4 ]] = adxi2
ad[xi3 ,xi4 ]

(xi1) = (adxi2
adxi3

(xi1)− adxi2
adxi4

(xi1)),

so we can rewrite the equations (1) in terms of (2). Furthermore, (2) can
be reduced to eight Lie monomials, by means of the Jacobi identity.

Vishne found another dependence, reducing (2) to be spanned by seven
Lie monomials, and with the help of Maple showed that they are indepen-
dent.

One can also list these has h1, . . . , h7 and look for αi such that
∑

αihi =
γs4 for some γ. This gives 24 equations in 7 variables, and one can check that
the coefficient matrix has rank 7, thereby yielding no nontrivial solutions.

2.1. The case n = 2. The identities of sl2 are determined in [Ra, Theorem 36.1].
We can provide a Lie identity of degree 5:

Theorem 1. The multilinear Lie polynomial p(x1, . . . , x5) = s4(adx1 , adx2 , adx3 , adx4)(x5)
is PI.

Proof. The set {adx, x ∈ M2(K)} is a 3-dimensional linear space, therefore for any
xi the set {adx1 , adx2 , adx3 , adx4} is linearly dependent. Without loss of generality,
adx4 = c1adx1 + c2adx2 + c3adx3 for some ci ∈ K. Note that p is multilinear,
therefore

p(x1, . . . , x5) =
3∑

i=1

cip(x1, x2, x3, xi, x5),

each term equals 0, therefore p is PI. �
According to [Š, Proposition 7.5], if p is a Lie polynomial of degree no more

than 4 then Im p = sl2. Therefore minimal degree of Lie PI is 5.
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Theorem 2. If f is a homogeneous Lie polynomial evaluated on the matrix ring
M2(K) (where K is an algebraically closed field), then Im f is either {0}, or K (the
set of scalar matrices), or the set of all non-nilpotent matrices having trace zero,
or sl2(K), or M2(K).

Remark 4. The case of scalar matrices in Theorem 2 is possible only if CharK = 2,
and the last case M2(K) is possible only if deg f = 1.

Proof of Theorem 2 According to the [BeMR1, Theorem 1] the image of f
must be either {0}, or K, or the set of all non-nilpotent matrices having trace zero,
or sl2(K), or a dense subset of M2(K) (with respect to Zariski topology). Note
that if at least one matrix having nonzero trace belongs to the image of f then
deg f = 1 and thus Im f = M2(K). Therefore Im f is either {0}, or K (the set of
scalar matrices), or sl2(K), or M2(K). �

Theorem 3. For K any algebraically closed field of characteristic ̸= 2, the image of
any Lie polynomial f (not necessarily homogeneous) evaluated on sl2(K) is either
sl2(K), or {0}, or the set of trace zero non-nilpotent matrices.

Proof. For f not a PI, we can write f = fk + fk+1 + · · · + fd, where each fi is a
homogeneous Lie polynomial of degree k, and fd is not PI. Therefore for any c ∈ K
we have

f(cx1, cx2, . . . , cxm) = ckfk + · · ·+ cdfd.

Since fd is not PI, there exist specializations of x1, . . . , xm for which det(fd) ̸=
0. Fixing these specializations of the xi, we consider det(ckfk + · · · + cdfd) as a
polynomial in c of degree k + · · · + d. Since the leading coefficient is not zero and
K is algebraically closed, its image is K. Thus for any l ∈ K there exist x1, . . . , xm

such that det(f) = l. Hence (for CharK ̸= 2) any matrix with eigenvalues λ and
−λ for λ ̸= 0 belongs to Im f . Therefore Im f is either sl2 or the set of trace zero
non-nilpotent matrices.

�

Let us give examples of Lie polynomials with such images:

Examples. If CharK = 2, then the case K also is possible: We take f(x, y, z, t) =
[[x, y], [z, t]]. Any value of f is the Lie product of two trace zero matrices s1 = [x, y]
and s2 = [z, t]. Both can be written as si = hi + ui + vi, where the hi are diagonal
trace zero matrices (which are scalar since CharK = 2), the ui are proportional to
e12, and the vi are proportional to e21. Thus [s1, s2] = [u1, v2] + [u2, v1] is scalar.

Over an arbitrary field, Im f can indeed equal to {0}, or K, or the set of all
non-nilpotent matrices having trace zero, or sl2(K), or M2(K).

Im f = M2(K) for any Lie polynomial of degree 1.
The image of f(x, y) = [x, y] is sl2.
Next, we construct a Lie polynomial whose image evaluated on sl2(K) is the set

of all non-nilpotent matrices having trace zero. We take the multilinear polynomial
h(u1, . . . , u8) constructed in [DK] by Drensky and Kasparian which is central on
3× 3 matrices. For the 2× 2 matrices x1, . . . , x9 we consider the homogeneous Lie
polynomial

f(x1, . . . , x9) = h(ad[[[x1,x9],x9],x9], adx2 , adx3 , . . . , adx8)(x9).
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For any 2 × 2 matrix x the adjoint operator adx : sl2(K) → sl2(K) that sends
any trace zero matrix y to [x, y]. Since sl2 is 3-dimensional, adx is a 3× 3 matrix;
hence, for any values of xi, the value of f has to be proportional to x9. However
for nilpotent x9 it has to be zero because [[[x, n], n], n] = 0 for any x ∈ sl2(K) if
n is nilpotent. (When we open the brackets we have the sum of 8 terms and each
terms equals nkxn3−k and for any integer k either k ≥ 2 or 3 − k ≥ 2.) Thus the
image of f is exactly the set of non-nilpotent trace zero matrices.

Another example of a homogeneous Lie polynomial with no nilpotent values is
f(x, y) = [[[x, y], x], [[x, y], y]] (see [BGKP, Example 4.9] for details).

Let K[ξ] denote the polynomial algebra in infinitely many indeterminates (over
K), a principal ideal domain. Let K{Y }n denote the algebra of generic matrices
yk = (ξki,j), where each ξki,j denotes a distinct indeterminate [Row].

Remark 5. Our next theorem describes the situation in which the trace vanishing
polynomial does not take on nonzero nilpotent values. It implies that any nontrivial
word map w evaluated on PSL2 is not surjective iff its projection to sl2 given by
sl2 : x 7→ x− 1

2 trx is a multiple of any prime divisor of det(π(w)). This might help
in answering Conjecture 1.

Theorem 4. Let f(x1, . . . , xm) be a trace vanishing polynomial, evaluated on
Mn(K[ξ]). Let f̄ = f(y1, . . . , ym). Then f takes on no nonzero nilpotent values on
any integral domain containing K, iff each prime divisor d of det(f̄) also divides
each entry of f̄ .

Proof. (⇒) If some prime divisor d of det(f̄) does not divides f̄ , then f̄ does not
specialize to 0 modulo d. Therefore we have a nonzero matrix in the image of f
which has determinant zero and also trace zero, and thus is nilpotent, a contradic-
tion.

(⇐) Assume that f takes on a nonzero nilpotent value over some extension
integral domain of K. Thus det f̄ goes to 0 under the corresponding specialization
of the ξki,j , so some prime divisor d of det(f̄) goes to 0, and f̄ is not divisible
by d. �

2.2. The case n = 3. Many new questions arise concerning the possible evaluation
of Lie polynomials. In the associative case, the fact that the generic division algebra
has a 3-central element implies that there is a homogeneous 3-central polynomial
f for M3(K), i.e., all of whose values take on eigenvalues c, ωc, cω2, where ω is a
cube root of 1. But any matrix with these eigenvalues is either scalar or has trace
0. This leads us to the basic question:

Question 2. Is there a Lie polynomial f whose values on sl3 all take on eigenvalues
c, ωc, cω2, where ω is a primitive cube root of 1?

According to [BeMR2, Theorem 3], if p is homogeneous polynomial with trace
vanishing image, then Im p is one of the following:

• {0},
• the set of scalar matrices (which can occur only if CharK = 3),
• a dense subset of sl3(K), or
• the set of 3-scalar matrices, i.e., the set of matrices with eigenvalues (c, cω, cω2),
where ω is our cube root of 1.
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We can give examples of Lie polynomials for {0} and a dense subset of sl3(K). The
questions whether exists 3-central Lie polynomial and central (where K is a field
of characteristic 3) remain being open.

Proposition 3. Let L = adsl2, viewed as a subalgebra of sl3 . The possible evalua-
tions of an associative polynomial on L are:
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