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ABSTRACT

Grain boundary wetting in polycrystals is analysed 2s a percolation process.
Percolation theory provides mathematical tools which can be used for predicting certain
macroscopical properties of internally wetted polycrystalline materials: percolation threshold,
topology of wetted (or dry) boundaries ensembles, finite size effects etc. In this paper, we
discuss advantages and difficulties connected with the percolation approach.

INTRODUCTION
A large amount of literature deals with percolation theory and its applications (see, €.g.
[1]) describing the behaviour of various systems having a common feature: they are
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characterized by a randomly distributed

onstituted of elements (sites and bonds linking them)
parameter responsible for their connectivity. Percolation theory postulates the existence of a
sharp transition (percolation threshold p,) at which the long-range connectivity of the system
(an infinite cluster of connected elements) appears (or disappears) when the occupation
probability p of an element gradually increases (or decreases). Wetting of grain boundaries
(GBW) in polycristalline materials may be considered as a percolation process because of the
difference (stochastic at least in some cases) in wettability from one boundary to another. In
this paper, we develop our previously reported [2,3] work laying an emphasis on some new

experimental evidence confirming theoretical predictions.

THEORETICAL PREDICTIONS
We shall firstly analyse the simplest case of GBW in an imaginary ideal polycrystal.
Consider an array of identical polyhedral grains having a constant number of faces per cell
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e.g. F'=12) and sides per face (e.g. S = 5) and let a given boundary (or anvther p

element) be wettable at random, i.e. the wetting probability of each element p is assumed to be

independent on the fact whether the neighbour element is wetted or not. Even this simplified
picture allows us to make some quantitative estimates.

1. Percolation thresholds Values for p. can be found from coordination numbers z
(number of percolation lattice elements contacting any given element): either as well-known
solutions for classical percolation problems of both types (site or bond) on regular 2D and 3D
lattices with the same z, or interpolating such values. Some examples are given in Table 1.

One can see that the percolation thresholds are scattered cver a rather wide range, as a
function of the system geometry. So, for p lying between 0.2 and 0.65, the wetting path should
be considerably shorter in one-grain-thick foils than in 3D specimens. Cases 1,3 and 5 refer to
different percolation sub-systems within the same 3D structure. It should be noted that while

p. values can be inferred from purely geometrical considerations, the underlying p values
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become interrelated if we attribute to them a physical (interface energy based) meaning, as it is
generally accepted (see detailed analysis in [3]).

Table 1.
N° Wettable element Lattice D| z | Type | p. |
1 | GB plane in a 3D polycrystal fce.-bec. | 3|10 |site | 0.21
2 | GB plane in a thin foil honeycomb | 2 | 3 | bond | 0.65
3 | Triple junction line diamond 31 4 |bond | 0.37
4 | GB plane on a fracture surface*) | triangular 2| 6 |site 0.50
5 | GB plane + wettable corners - | 3 ] 15 |site | 0.18

*) We have analysed percolation on a facetted surface for various values of S; here for
simplicity’s sake § = 6.

2. Fractal structures Certain parameters X characterizing structure, transport and
some other properties of percolation clusters are known to depend only on the dimensionality
of the system and not on the coordination number. Therefore they are predictable with a
greater deal of reliability than p. . In general, a set of universal critical exponems y defines

such properties not too far from p,. :

X~1p-p1”

In particular, these X onﬁn‘ts determine the fractal topolo of wvercolation clusters
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at lengtns less that £, and it is homogeneous above & . For isolated f’ nite clusters of wetted
GBsatp < p,,d=1.56 or 2 in 2D or 3D respectivel

We have computed fractal dimensions of model 2D finite and infinite clusters in order
to establish the minimum number of points required for obtaining reliable values. Several

hundreds of points usually are sufficient for an accuracy of + 0.01.
2

3. Fi
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Fig.1 a,b: the model “wetting liquid” ascends along “GBs” atp=1.1p, ina dxﬂeren’t manner
in two identical samples, one of which is cut into four narrow stmps The critical probability of
the finite system p.* is here (b) considerably higher than its value for an infinite system.

b3 < 3 %
> p. for narrow samples and p.* < p, for short
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Fig.1. Computer simulation of 2D invasion
percolation on honeycomb lattice: role of the
sample width

rue values of p. can be found from experimentally determined p.*, using scaling laws
relating these values with universal critical-exponents. Use of finite size samples is a very
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promising method for solving various percolation problems (see e.g. [4]). Explicit
relationships are given in [5] for samples with a constant length to width ratio.

4. Correlated and oriented percolation problems Many percolation problems deal
with not completely random systems where the occupation of a site or a bond may influ>nce
the occupation of its neihgbours [6], or the probability p depends on space orientation of the
bond [7]. In the context of the present work, a number of situations &sises when the correlation
or orientation effects are to be taken into account:

4.1. Polychromatic percolation In two-phase systems, three kinds of grain boundaries
AA, BB and AB have generally different wettabilities py, and, obviously, are disposed in a
non-random way. As we have shown using renormalization group method and direct computer
modelling, p. may be lower or higher than the usual z-defined value, but the difference is
negligible excepting some special situations. So, if the wetting probabilities in a 2D square
lattice are pyy = pss = 0 and pys = 1, i.e. every adhesive and no one cohesive boundary is
wetted, then p. is lowered by about 0.05.

4.2. Grain misorientation A correlation factor inherent to polycrystals is the grain
misorientation angle @ influencing, as it is known, the wetting probability of any given GB.
We have studied the role of this factor for various 2D and 3D computer models cf polycrystals
by comparing experimental p. values (found as percolation probability P = 50%) for
randomly distributed & and correlated & computed from orientations of neighbouring grains.
The difference has been found to decrease sharply with increasing coordination number and to
have a maximum value (about 0.02) for thin polycrystalline foils (Fig.2). Such a method
enables us to model percolative properties of texturized materials, provided that p {6°)

dependence is known.
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4.3, Oriented percolation  Oriented GBW in a stressed model polycrystal was firstly
theoretically studied in [8]. It can easily be seen that in a stress field enhancing or inhibiting
GBW along certain G.lregmons an amsotropy of p. should exist, which can lead finally to a

tra*}sltw , from 3D to 2D geometry implying a p. increase (cf. cases 1 and 4 of the Table 1).
We have estimated p, in a quasi-2D facetted surface generated by such a transition, over a
range of <S> (average GB polygonality) and shown that for 5 to 6-sided GBs, a p. increase
should be more than twofold.

EXPERIMENTAL

There are many reasons why the above outlined approach can supply good or not very
good models for various real polycrystalline materials. At least two questions are vital in each
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concrete case: what value can we take for z, and is p really constant throughout the
polycrystal? The first question does not create serious difficultics because the results
exemplified in Table 1 are easily extendable to any other z. Moreover, the low z values are
usually well defined, while for high ones p. is less sensitive to z variations. As for the second
question, the answer can be very informative: the extent to which experimentally observed
GBW obeys the percolation laws, as well as the fractal dimension of GB ensembles, may be
regarded as a criterion for its stochastic character and thus to provide an-insight into the
physico-chemical mechanism(s) of the process.

As in many other applied percolation problems, exact percolation thresholds cannot
be determined experimentally. However, there is an abundant evidence confirming that
continuous or discrete topology of wetted GB clusters is determined as stated above, at least at
p << p.or p>> p,..For example, we observe a dramatic difference in wetting path length in
3D and quasi-2D polycrystals Zn-Ga, NaCl-H,O and many other couples.

More exact estimates can be obtained by studying finite size effects which were
already reported [2] for NaCl cylindrical polycrystals wetted with brine. We have studied
more extensively GBW of a thin foil of Zn by liquid gallium. The results are shown in Fig.6.
Comparing experimental plot to computer models confirms the péicolative character of the
process: the shapes of experimental and computer curves are similar, as well as experimental
wetting probability (0.6 to 0.65 as directly measured using SEM technique) and model values.

A direct experimental evidence for the fractal character of GBs ensembles (and,
consequently, for the applicability of the percolation ideas) has been obtained by measuring

misorientation angles for a great number of GBs and topology of Ga-wetted GBs clusters in
Zn polycrystals (Figs 3 to 5). Zn-Ga system has the advantage of having a wetting probability

LA.[ !.JUL L youcio 2

(about 0.6 in our expenmen‘ts) close to p, for the honeycomb lattice. The fractal dimension of
the low angle (<40° ) and high angle (>40°) GBs (1.52 to 1.59 and 2, respectively) is in an
excellent agreement with the percolation theory predictions for finite and infinite 2D cluster
fractal dimensions. As regards the fractal dimension of wetted boundaries, its non-Euclidean
value (1.9 instead of 2) is likely to be distinctly visible in plotting experimental data (Fig. 4).
Oriented percolation pattern can be applied, as well as to GBW, to the solid
precipitates, for example for cementite precipitates in nitrided steel (see fig. 7). Orientation
anisotropy of this system illustrates a transition from 3D to 2D geometry. During nitriding of
alloyed steels, the expansion of the surface Iayer is counteracted by the core thus leading to the
appearance of biaxial compressive stresses which prohibit formation of precipitates oriented
perpendicularly to the surface. Low brittleness of nitrided steels can be explained by just an

increase of percolation threshold and, as a result, absence of infinite cluster of precipitates.

CONCLUSIONS

Percolation theory and inherent to it fractal geometry have been shown to be useful for
analysing and predicting connectivity and topology of wetted grain boundaries ensembles at
least in some systems. Further work is needed to extend the proposed approach to other
materials.
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Fig.3. Fractal relation between mass and
perimeter of low misorientation angle GBs
clusters in Zn
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Fig.5. Fractal relation between mass and perimeter of “holes” in infinite clusters of GBs in Zn having a high
misorientation angle (a) and wetted with Ga (b)

| o
100 /“"
/
. r’/’ T

S10]. 3171 1 g5

[} ji(uq. gt G e
J ifﬁ e 4
= i) 3
| Eme T

H, grains
Fig.6. Penetration depth (x) of liquid Ga into
2D polycrystailine strips of Zn as compared to
computer simulation for various p values
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Fig.7. Cementite precipitates in nitrided layer of

steel 32 CDV13
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