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Amathematical model of terminal control with two basic components:
a controlled dynamics and a boundary value problem in the form of
multicriteria equilibrium model, is considered. The boundary value problem
describes a controlled object situated in a equilibrium state. Under the
influence of external disturbances the object loses its state of stability
and must be returned to equilibrium. The saddle point approach was
used to do this, and the extraproximal method was applied to find a
solution. The convergence of the method to solution was proved.

Boundary value problem. A group of m participating countries
creates a community for the realization of some economic project. It
is assumed that by the time of the community creation, the member
countries have already identified their interests and objectives in the
project, set types and amount of resources required to participate in
integration. Interests of each of the participants are described by cost
objective functions fi(x1), i = 1,m, which are defined on a common
set of resources X1 ⊆ Rn. Each of participants wants to minimize the
cost of its contribution to the overall project. In the first approximation,
this situation can be described as a simple multicriteria optimization
problem:

f(x∗1) ∈ ParetoMin{f(x1) | x1 ∈ X1}, (1)

where f(x1) = (f1(x1), f2(x1), ..., fm(x1)) is a vector criterion; convex
scalar function fi(x1) is value of resources that must be entered in the
community by i-th participant to implement the project. The problem
(1) generates a set of solutions in the form of vast variety of Pareto-
optimal points.

Along with the individual interests of participants there exist also
group interests, for example, the cost of the whole project. For different
Pareto-optimal estimates this cost is different. It is natural to choose
the project with a minimum value. Thus, it is necessary to formulate a
mathematical model that takes into account both the individual interests
of each participant and group (collective) interests of the community.
As a result, the following two-person game with Nash equilibrium was
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proposed [1]:

〈λ∗, f(x∗1)〉 ∈ Min{〈λ∗, f(x1)〉 | x1 ∈ X1}, (2)

〈λ− λ∗, f(x∗1)− λ∗〉 ≤ 0, λ ≥ 0. (3)

Formulation of terminal control problem. We add a controlled
dynamics to the problem (2),(3) and formulate the following common
dynamic model with multicriteria optimization boundary value problem:

d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, x(t0) = x0, (4)

x(t1) = x∗1 ∈ X1 ⊆ Rn, u(·) ∈ U, (5)

U = {u(·) ∈ Lr
2[t0, t1] | ‖u(·)‖2Lr

2
≤ C}, (6)

where x∗1 is x1-component of solution for multicriteria equilibrium problem
(2),(3). Here D(t), B(t) are continuous matrices, x0 is initial condition,
x(t) ∈ ACn

2 [t0, t1] (linear variety of absolutely continuous functions).
The dynamic model (2)-(6) describes the transition of controlled object
from the initial state x0 to a terminal state x(t1) = x∗1, which is given
implicitly as the solution of (2),(3). We look for a control u∗(t) ∈ U
such that the trajectory x∗(t) has got by its right end to the appropriate
component x∗(t1) of boundary value problem’s solution.

Saddle point approach to the problem. We associate the problem
(2)-(6) with the saddle-point-type function, which will play a role similar
to the Lagrange function in convex programming:

L(λ, ψ(t);x1, x(t), u(t)) =

= 〈λ, f(x1)− 1

2
λ〉+

∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt, (7)

defined for all (λ, ψ(·)) ∈ Rm
+×Ψn

2 [t0, t1], (x1, x(t), u(t)) ∈ X1×ACn[t0, t1]
×U. In the case of regular constraints, the function (7) always has
a saddle point (λ∗1, ψ

∗(·);x∗1, x∗(·), u∗(·)), which is the solution of the
problem. Therefore, the problem (2)-(6) is reduced to finding the saddle
points of (7).

Method to solve the problem. The dual extraproximal method
that guarantees the convergence to the solution of saddle point problem
(2)-(6), has been applied [1]:

λ̄k = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk1)− 1

2
λ〉 | λ ≥ 0

}
, (8)
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ψ̄k(t) = ψk(t) + α

(
D(t)xk(t) +B(t)uk(t)− d

dt
xk(t)

)
, (9)

(xk+1
1 , xk+1(·), uk+1(·)) = argmin

{
1

2
|x1 − xk1 |2 +

+α〈λ̄k, f(x1)− 1

2
λ̄k〉+

1

2
‖x(t)− xk(t)‖2 +

1

2
‖u(t)− uk(t)‖2 +

+ α

∫ t1

t0

〈ψ̄k(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt

}
, (10)

λk+1 = argmin

{
1

2
|λ− λk|2 − α〈λ, f(xk+1

1 )− 1

2
λ〉 | λ ≥ 0

}
, (11)

ψk+1(t) = ψk(t) + α

(
D(t)xk+1(t) +B(t)uk+1(t)− d

dt
xk+1(t)

)
, α > 0,

(12)
where a minimum in (13) is computed in all (x1, x(·), u(·)) ∈ X1 ×
ACn[t0, t1]×U. A similar approach was considered in [2].

Theorem (on convergence of the method). If the solution of equilibrium
problem (2)-(6) exists, functions fi(x1), i = 1,m, are convex and subject
to Lipschitz condition with constant L, then the sequence generated by
the dual extraproximal method (8)-(12) with the parameter α, satisfying
the condition 0 < α < α0, where α0 is a defined constant, contains a
subsequence that converges to one of the solutions (λ∗, ψ∗(·);x∗1, x∗(·), u∗(·))
of the problem. In this case, the convergence in controls is weak, the
convergences in phase and conjugate trajectories (as well as in terminal
variables) are strong.
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