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Abstract— We consider the well-known Bazykin–Svirezhev model describing the predator–
prey interaction. This model is a system of two nonlinear ordinary differential equations with
a small parameter multiplying one of the derivatives. The existence and stability of a so-called
relaxation cycle in such a system are studied. A peculiar feature of such a cycle is that as the
small parameter tends to zero, its fast component changes in a δ-like manner, while the slow
component tends to some discontinuous periodic function.
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1. STATEMENT OF THE PROBLEM AND RESULTS

The currently available general theory of relaxation oscillations in multidimensional systems of
ordinary differential equations can somewhat tentatively be divided into classical and nonclassical
theories. The classical theory goes back to the paper [1] by Mishchenko and Pontryagin, who postu-
lated its main notions. The subsequent development of this theory is reflected in the monograph [2],
and it acquired a fairly complete form in [3].
The simplest example of a system in which one can observe classical relaxation oscillations is the

system of van der Pol equations, which has the form

εẋ = y − 1

3
x3 + x, ẏ = −x, 0 < ε� 1. (1.1)

As was shown in the monograph [2, Ch. 3], for all sufficiently small values of the parameter ε
system (1.1) admits a stable relaxation cycle (x(t, ε), y(t, ε)), x(0, ε) ≡ −3/2, with period T (ε) such
that

lim
ε→0

T (ε) = T0, lim
ε→0

x(t, ε) = x0(t), lim
ε→0

y(t, ε) = y0(t). (1.2)

Here T0 > 0 is finite, and the functions x0(t) and y0(t) are T0-periodic. Further, y0(t) is continuous,
and x0(t) has two discontinuities of the first kind on any time interval of length equal to the period.
The first relation in (1.2) is preserved for a nonclassical relaxation cycle but, unlike the classical

relaxation oscillations, now the fast component changes in a δ-like manner as ε → 0, while the
slow one tends to some discontinuous T0-periodic function. In the case of relaxation systems on
the plane, the theory of oscillations was set forth in the paper [4]. The results in this paper were
included in extended form in the monograph [3]. One should also mention the paper [5] dealing
with nonclassical relaxation oscillations in a mathematical model of the Belousov reaction.
The present paper studies the existence and stability of a nonclassical relaxation cycle in the

well-known Bazykin–Svirezhev model describing the interaction of a highly prolific predator with
its prey. This mathematical model has the form (see [6])

Ṅ1 = r1

[
1− N1

K

]
N 2

1 − aN1N2,

Ṅ2 = r2

[
N1

K
− b

]
N2,

(1.3)
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NONCLASSICAL RELAXATION OSCILLATIONS 977

where N1(t) and N2(t) are the predator and prey population sizes, respectively, and r1, r2, a, b,
and K are positive parameters.
For convenience in the subsequent analysis, we make the changes of variables

Kr1t→ t, N1 = Kx, N2 =
Kr1
a
y,

which reduce system (1.3) to the form

ẋ = (1− x)x2 − xy,
ẏ = r(x− δ)y,

where r = r2/(Kr1) and δ = b. Further, assume that r � 1 (i.e., the predator is highly prolific).
As a result, we arrive at the singularly perturbed system

ẋ = (1− x)x2 − xy,
εẏ = (x− δ)y, (1.4)

where ε = 1/r � 1. The resulting system, which can be viewed as a counterpart of the model
system (1.1) in the theory of nonclassical relaxation oscillations, will be studied under the additional
assumption

0 < δ < 1/2. (1.5)

It will become clear from the subsequent analysis that this restriction guarantees the existence of
at least one stable nonclassical relaxation cycle in the system.
To find the cycles of system (1.4), we arbitrarily fix an x0 ∈ (δ, 1] (this half-open interval exists

by virtue of assumption (1.5)) and denote the trajectory of the system with the initial condi-
tions x(0, x0, ε) = x0, y(0, x0, ε) = 1 by

Γ(ε) = {(x, y) : x = x(t, x0, ε), y = y(t, x0, ε), t ≥ 0}. (1.6)

Further, consider the second positive root t = T (x0, ε) of the equation y(t, x0, ε) = 1 (provided it
exists) and define the Poincaré map by the formula

x0 �→ Π(x0, ε)
def
= x(t, x0, ε)|t=T (x0,ε). (1.7)

Our immediate goal is to establish how the operator (1.7) behaves asymptotically as ε→ 0.

Fig. 1.1. Phase point trajectory.
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Before we state rigorous assertions, we set forth some heuristic considerations. Note that in view
of the choice of x0, one has the inequality

(x0 − δ)y > 0 for all y > 0. (1.8)

Hence, based on the form of system (1.4), we conclude that the phase point (x, y) first moves in an
asymptotically small neighborhood of the ray {(x, y) : x = x0, y ≥ 1}, with the component y(t, x0, ε)
increasing monotonously to reach the value y = ε−3/4 in an asymptotically short time (of the order
of ε ln(1/ε)). We denote the corresponding part of the trajectory Γ(ε) by Γ1(ε) (Fig. 1.1). Given
inequality (1.8), it is appropriate to call this part the takeoff segment .
The next part of the trajectory lying in the half-plane {(x, y) : y ≥ ε−3/4} will be denoted

by Γ2(ε) and referred to as the turning segment . To find the trajectory behavior on this segment,
we make the change of variables u = εy in (1.4) and adopt the new variable x for new time. As
a result, after dropping asymptotically small terms, we obtain the following Cauchy problem for the
function u = u(x):

du

dx
= −x− δ

x
, u|x=x0

= 0. (1.9)

It can readily be seen that the solution of problem (1.9) is defined by the relation

u(x) = −(x− x0) + δ ln
x

x0

, 0 < x ≤ x0. (1.10)

Further, since we have

u(x0) = 0, u′(x) < 0 for δ < x ≤ x0, u′(x) > 0 for 0 < x < δ,

u(x)→ −∞ as x→ +0,

we see that the equation u(x) = 0 admits a unique solution x1 = x1(x0) on the interval (0, δ), with
u(x) > 0 for x1 < x < x0. It follows that when moving along the curve Γ2(ε), the phase point of
system (1.4) first leaves the straight line y = ε−3/4 and then returns to this line, i.e., makes a turn
(see Fig. 1.1). Moreover, after passing to the variables (x, u), the concerned segment Γ2(ε) ⊂ Γ(ε)
has the following curve as its limit as ε→ 0:

Γ0
2 = {(x, u) : u = u(x), x1 ≤ x ≤ x0}. (1.11)

The form of the curve (1.11) is presented in Fig. 1.2.

Fig. 1.2. Curve Γ0
2.

It also needs to be mentioned that the time of motion along the segment Γ2(ε) is asymptotically
small; strictly speaking, it is of the order of ε ln(1/ε). At the same time, each piece of the curve Γ2(ε)
corresponding to values x ∈ [a, b] ⊂ (x1, x0), where a, b = const > 0, is covered by the point (x, y)
within a time period of the order of ε.
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NONCLASSICAL RELAXATION OSCILLATIONS 979

The next segment Γ3(ε) of the curve Γ(ε), corresponding to values of the variable y in the inter-
val exp(−ε−3/4) ≤ y ≤ ε−3/4 is considered by analogy with how it was done for the segment Γ1(ε).
Indeed, since

(x1 − δ)y < 0 for all y > 0, (1.12)

we see that the curve Γ3(ε) is asymptotically close to the segment {(x, y) : x = x1, exp(−ε−3/4) ≤
y ≤ ε−3/4} (see Fig. 1.1). However, since the variable y decreases here by virtue of (1.12), un-
like Γ1(ε), it is appropriate to call this segment of the curve Γ(ε) the falling segment . As for the
“falling” time, it has the order of ε1/4.
We will refer to the next segment Γ4(ε) of the curve Γ(ε) lying in the half-plane {(x, y) : y ≤

exp (−ε−3/4)} (see Fig. 1.1) as the slow motion segment. To describe it, we switch in system (1.4)
to the new variable v = ε ln y and adopt the variable x for new time. As a result, after drop-
ping asymptotically small terms, we arrive at the following Cauchy problem for finding the func-
tion v = v(x):

dv

dx
=

x− δ
(1− x)x2

, v|x=x1
= 0. (1.13)

Solving this problem, we obtain

v(x) = (1− δ)
(
ln

x

x1

− ln
1− x
1− x1

)
+ δ

(
1

x
− 1

x1

)
, x1 ≤ x < 1. (1.14)

Note some of the properties of the solution (1.14) of problem (1.13). An easy check shows
that v′(x) < 0 for x1 ≤ x < δ, v′(x) > 0 for δ < x < 1, and v(x) → +∞ as x → 1 − 0.
Consequently, the equation v(x) = 0 has a unique solution x2 = x2(x1) on the interval δ < x < 1
with v(x) < 0 for x1 < x < x2 .
These properties of the function v(x) allow one to claim that the graph of the curve Γ4(ε) indeed

has the form depicted in Fig. 1.1. In addition, by analogy with the segment Γ2(ε), after passing to
the variables (x, v), this curve (Fig. 1.3) tends as ε→ 0 to the limit

Γ0
4 = {(x, v) : v = v(x), x1 ≤ x ≤ x2}.

Fig. 1.3. Curve Γ0
4.

The question about the time of motion along the curve Γ4(ε) deserves a separate note. Un-
like all the preceding segments, here this time is asymptotically finite; i.e., it admits, as ε → 0,
a finite limit

T0 = ln
x2(1− x1)

x1(1− x2)
+

1

x1

− 1

x2

; (1.15)

this explains why this segment has been called the slow motion segment.
At the final stage, consider the segment Γ5(ε) ⊂ Γ(ε), which will be called the ascent segment

and which is located in the strip {(x, y) : exp(−ε−3/4) ≤ y ≤ 1} (see Fig. 1.1). Note that since
in this case one has the inequality obtained from (1.8) by replacing x0 with x2, it follows that the
curve Γ5(ε) is asymptotically close to the segment {(x, y) : x = x2, exp (−ε−3/4) ≤ y ≤ 1}, and
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980 GLYZIN et al.

in the course of motion along the Γ5(ε), the variable y increases. (That is why it is the ascent
segment.) It is worth adding that the “ascent” time is asymptotically small (of the order of ε1/4).
Rigorous justification of the above-listed facts pertaining to the asymptotic behavior of the

trajectory (1.6) is based on the general theory of nonclassical relaxation oscillations developed
in [3–5]. In particular, by repeating the proof of a similar result in the paper [5] almost word for
word (with some simplifications), we arrive at the following assertion.

Theorem 1.1. For each fixed δ ∈ (δ, 1) and for all sufficiently small ε > 0, the operator (1.7) is
defined on the interval δ ≤ x0 ≤ 1 and satisfies the limit relations

lim
ε→0

max
δ≤x0≤1

|Π(x0, ε)−Π(x0)| = 0,

lim
ε→0

max
δ≤x0≤1

|Π′(x0, ε)−Π′(x0)| = 0.
(1.16)

Here the prime denotes the derivative with respect to the variable x0 , and the operator Π(x0) is
defined by the relations

Π = Π2 ◦Π1, Π1 : x0 �→ x1 = x1(x0), Π2 : x1 �→ x2 = x2(x1), (1.17)

where x1 = x1(x0) and x2 = x2(x1) are the above-introduced roots of the equations u(x) = 0
and v(x) = 0, respectively.
The above theorem reduces the question about existence and stability of cycles in system (1.4)

to a similar question for fixed points of the limit operator (1.17) that lie in the interval δ < x0 < 1.
Namely, the following assertion holds.

Theorem 1.2. Suppose that the mapping (1.17) admits a fixed point x0 = x∗0 ∈ (δ, 1) such that|Π′(x∗0)| < 1. Then in the original system (1.4) for all sufficiently small ε > 0 this fixed point is
associated with the exponentially orbitally stable nonclassical relaxation cycle

(x∗(t, ε), y∗(t, ε)), y∗(0, ε) ≡ 1 (1.18)

of period T∗(ε).
We point out that Theorem 1.2 does not require separate justification, since it is a corollary

of Theorem 1.1. Indeed, it follows from the limit relations (1.16) that the Poincaré map (1.7) for
all sufficiently small ε > 0 admits an exponentially stable fixed point x0 = x∗0(ε) asymptotically
close to x∗0. In system (1.4), the indicated fixed point is associated with the stable cycle (1.18) of
period T∗(ε), where

x∗(t, ε) = x(t, x0, ε)|x0=x∗
0(ε)

,

y∗(t, ε) = y(t, x0, ε)|x0=x∗
0(ε)

,

T∗(ε) = T (x0, ε)|x0=x∗
0(ε)

.

(1.19)

It only remains to verify that the cycle is nonclassical.
Considering relations (1.19) and taking into account the above-described asymptotic properties

of the trajectory (1.6), we conclude that the indicated cycle has the following properties. First, one
has the limit relation

lim
ε→0

T∗(ε) = T∗ (1.20)

(where T∗ is the quantity in (1.15) with x0 = x∗0 and x1 = x∗1 ≡ x1(x
∗
0)).

Second, the component y∗(t, ε) behaves in a δ-like manner as ε → 0. Namely, on the interval
0 ≤ t ≤ t∗(ε), where t∗(ε) = O(ε ln(1/ε)) is the first positive root of the equation y∗(t, ε) = 1,
an asymptotically high burst (of the order of ε−1) occurs with

lim
ε→0

t∗(ε)∫
0

y∗(t, ε) dt = ln
x∗0
x∗1

> 0. (1.21)
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For the rest of the time, the function y∗(t, ε) is exponentially small. To be precise, for any μ1, μ2 ∈
(0, T∗/2) on the interval μ1 ≤ t ≤ T∗(ε)− μ2 one has the estimate

y∗(t, ε) ≤M1 exp(−M2/ε), M1,M2 = const > 0. (1.22)

Third, as ε → 0, the component x∗(t, ε) converges uniformly in t on an interval of the form
[μ1, T∗(ε)− μ2], where, as above, μ1, μ2 = const ∈ (0, T∗/2), to a function x∗(t) that is a solution
of the Cauchy problem

ẋ = (1− x)x2, x|t=0 = x∗1.

We point out that when periodically continued to the entire time axis with period T∗, the func-
tion x∗(t) turns out to be discontinuous at the points t = kT∗, k ∈ Z.
Combining properties (1.20)–(1.22) and considering the nature of the dependence of the compo-

nent x∗(t, ε) on ε, we conclude that the stable relaxation cycle (1.18) of system (1.4) delivered by
Theorem 1.2 is nonclassical indeed. A visual idea of this cycle is given by Fig. 1.4, which provides
the graphs of the components of this cycle for parameter values ε = 0.01 and δ = 0.44 (the solid
line indicates the graph of y∗(t+ c, ε) and the dashed line, the graph of x∗(t+ c, ε), where c ∈ R is
some phase shift).

Fig. 1.4. Components of the stable relaxation cycle.

2. ANALYSIS OF THE LIMIT MAPPING

In this section, we verify that the applicability domain of Theorem 1.2 is a fortiori nonempty.
To be precise, we establish the following assertion.

Theorem 2.1. Under condition (1.5), the limit mapping (1.17) admits at least one exponentially
stable fixed point on the interval δ < x0 < 1.
We start the proof of this theorem by a remark on some general properties of the mapping (1.17).

It follows from definition (1.17) and the way in which the functions x1(x0) and x2(x1) have been
defined that, first,

Π′(x0) =
1− x2

1− x1

x0 − δ
x2 − δ

x2
2

x0x1

∣∣∣∣x1=x1(x0)
x2=x2(x1)

> 0 for all x0 ∈ (δ, 1]; (2.1)

second,
lim

x0→δ+0
Π(x0) = δ, Π(1) < 1. (2.2)

Relations (2.1) and (2.2) show that when extended by continuity to the value x0 = δ, the
mapping (1.17) takes the segment δ ≤ x0 ≤ 1 into itself and has the fixed point x0 = δ. Let us
verify that this fixed point is unstable.

DIFFERENTIAL EQUATIONS Vol. 56 No. 8 2020



982 GLYZIN et al.

First, consider the function

x1(ν) = x1(x0)|x0=δ+ν , 0 < ν � 1. (2.3)

Substituting the expression x0 = δ + ν into relation (1.10) and analyzing the resulting equa-
tion u(x) = 0, we conclude that the desired function (2.3) admits the asymptotics

x1(ν) = δ − ν + 2

3δ
ν2 +O(ν3) as ν → +0. (2.4)

Now let us substitute the representation (2.4) into (1.14) and carry out an asymptotic calculation
of the function x2(ν) = x2(x1)|x1=x1(ν), which, as we remember, is a root of the corresponding
equation v(x) = 0. As a result, we obtain

Π(δ + ν) = x2(ν) = δ + ν +
2

3δ

1− 2δ

1− δ ν
2 +O(ν3) as ν → +0. (2.5)

Relation (2.5) and condition (1.5) guarantee that the inequality Π(δ + ν) > δ + ν for 0 < ν � 1
holds. This, in turn, implies that the fixed point x0 = δ of the mapping (1.17) is repelling. In the
original system (1.4), this point is associated with the equilibrium (x, y) = (δ, δ(1 − δ)), which is
also unstable under condition (1.5).
Combining the facts listed above, we conclude that the mapping (1.17) transforms an interval

of the form δ ≤ x0 ≤ 1 strictly into itself, where the quantity δ belongs to the interval (δ, 1) and
is sufficiently close to δ. Since the mapping Π(x0) is analytic, it follows that, first, the number of
fixed points of this mapping on the indicated interval is finite and the fixed point set is a fortiori
nonempty; second, among these points there exists at least one fixed point x0 = x∗0 such that the
difference Π(x0)− x0 changes its sign from “+” to “−” when passing through this point. Since the
mapping Π(x0) is monotone (see (2.1)), it follows that this fixed point is asymptotically stable, and
it is exponentially stable under the condition Π′(x∗0) 
= 1.
The above preliminary analysis implies that to justify Theorem 2.1, it suffices to check whether

the inequality
Π′(x0) 
= 1 (2.6)

holds for each fixed point x0 ∈ (δ, 1) of the mapping (1.17).
Assume the contrary: there exists a value x0 ∈ (δ, 1) such that

Π(x0) = x0, Π′(x0) = 1. (2.7)

Since the point x0 is fixed, we have x2 = x0. Taking into account this relation in the formula
for Π′(x0) (see (2.1)), we conclude that the second relation in (2.7) is equivalent to the relation

x0(1− x0) = x1(1− x1).

Hence we necessarily have
x1 = 1− x0. (2.8)

Substituting the expression (2.8) into the equation u(x1) = 0, we arrive at the relation

δ =
2x0 − 1

ln(x0/(1− x0))
, (2.9)

which allows one to localize possible values of the variable x0.
To this end, we introduce the function

ω(x0) =
2x0 − 1

ln(x0/(1− x0))
(2.10)
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and note that
lim

x0→+0
ω(x0) = 0,

lim
x0→1/2

ω(x0) = 1/2,

lim
x0→1−0

ω(x0) = 0,

ω′(x0) > 0 for each x0 ∈ (0, 1/2),
ω′(x0) < 0 for each x0 ∈ (1/2, 1).

(2.11)

Indeed, the first three properties in (2.11) automatically follow from the explicit form (2.10) of
the function ω(x0). At the same time, the inequalities can easily be reduced to the conditions

ϕ(x0) > 0 for each x0 ∈ (0, 1/2),
ϕ(x0) < 0 for each x0 ∈ (1/2, 1), (2.12)

where
ϕ(x0) = 2x0(1− x0) ln

x0

1− x0

− 2x0 + 1. (2.13)

In turn, it follows from (2.13) that

ϕ(1/2) = 0, ϕ′(x0) = 2(1− 2x0) ln
x0

1− x0

< 0 for each x0 ∈ (0, 1), x0 
= 1/2;

the latter in a self-obvious manner implies the desired inequalities (2.12).
Taking into account condition (1.5) and property (2.11), we conclude that the variable x0 in (2.9)

may at best belong to the union of the intervals (0, 1/2) and (1/2, 1). However, it may not belong
to the interval (0, 1/2), because on this interval one has the inequality

ln
x0

1− x0

> 2− 1

x0

,

contradicting the requirement x0 > δ = ω(x0).
Now consider the equation v(x) = 0 for finding x = x2. Substituting the expressions x = x0

and x1 = 1− x0 into this equation, we arrive at the relation

δ = 2

[
2x0 − 1

x0(1− x0)
+ 2 ln

x0

1− x0

]−1

ln
x0

1− x0

, (2.14)

which is similar to (2.9). Equating the right-hand sides of relations (2.9) and (2.14) with each other,
we verify that x0 is necessarily a root of the equation

Φ(x0)
def
= 2 ln2

x0

1− x0

− 2(2x0 − 1) ln
x0

1− x0

− (2x0 − 1)2

x0(1− x0)
= 0. (2.15)

However, as will be shown below, this equation does not have solutions on the interval 1/2 < x0 < 1.
In the analysis to follow, we need the obvious relations

Φ′(x0) = 4

(
1

x0

+
1

1− x0

− 1

)
ln

x0

1− x0

− 6
2x0 − 1

x0(1− x0)
− (2x0 − 1)3

x2
0(1− x0)2

, (2.16)

x2
0(1− x0)

2Φ′′(x0) = 2(2x0 − 1)

[
2 ln

x0

1− x0

− 3(2x0 − 1)− (2x0 − 1)
x3
0 + (1− x0)

3

x0(1− x0)

]
, (2.17)

which will be used to establish the properties

Φ′(x0) < 0, Φ′′(x0) < 0 for each x0 ∈ (1/2, 1). (2.18)

DIFFERENTIAL EQUATIONS Vol. 56 No. 8 2020
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First, consider the second inequality in (2.18) and note that, by virtue of (2.17), it is equivalent
to the estimate

2x0(1− x0)

3x0(1− x0) + x3
0 + (1− x0)3

ln
x0

1− x0

< 2x0 − 1 for each x0 ∈ (1/2, 1). (2.19)

Let us make the change of variables x0/(1 − x0) = z0 ∈ (1,+∞) in (2.19), which transforms the
desired estimate to the form

ψ(z0) < z0 − 1 for each z0 ∈ (1,+∞), (2.20)

where
ψ(z0) =

2z0
1 + z0

ln z0. (2.21)

A straightforward verification shows that the function (2.21) has the properties

ψ(1) = 0, ψ′(1) = 1, ψ′′(z0) < 0 for each z0 > 1,

and hence for z0 > 1 its graph x = ψ(z0) lies below its tangent straight line x = z0 − 1; i.e., the
inequality (2.20) is satisfied.
Now the first inequality in (2.18) in an obvious manner follows from the above-derived esti-

mate Φ′′(x0) < 0, where x0 ∈ (1/2, 1), and from the easy-to-check relation Φ′(1/2) = 0 (see (2.16)).
Further, by virtue of the first inequality in (2.18) and the fact that Φ(1/2) = 0 (see (2.15)), we
conclude that Φ(x0) < 0 for all x0 ∈ (1/2, 1). Thus, Eq. (2.15) does not have solutions on the
interval (1/2, 1), and hence assumptions (2.7) are false. The proof of the theorem is complete.
Apparently, the assertion about the uniqueness of a stable fixed point of the mapping (1.17)

holds true. According to the constructions above, to prove this assertion it suffices to establish that
each fixed point x0 of this mapping on the interval (δ, 1) satisfies the condition Π′(x0) < 1 instead
of condition (2.6). Another method for proving the uniqueness is as follows.
When seeking a solution x = x1 of the equation u(x) = 0, we introduce the new variable

z = x1/x0, which, by virtue of the inequality x1 < x0, belongs to the interval (0, 1). As follows from
the equation u(x) = 0, for x0 one has the relation

x0 =
δ ln z

z − 1
. (2.22)

Note also that in the case of (2.22), the estimate x0 > δ is satisfied automatically, but one needs to
require specifically that the inequality x0 < 1 be satisfied. It can readily be seen that this inequality
is equivalent to the condition

z − 1− δ ln z < 0. (2.23)

Now consider the equation v(x) = 0 for finding x = x2. Since for each fixed point of the
mapping (1.17) one has the relation x2 = x0, we substitute the expressions

x2 = x0, x1 = zx0, x0 =
δ ln z

z − 1

into the relation v(x2) = 0. As a result, to find the as yet unknown quantity z, we arrive at the
equation

Ψ(z)
def
= −(1− δ)

(
ln z + ln

z − 1− δ ln z
z − 1− δz ln z

)
+
(z − 1)2

z ln z
= 0. (2.24)

It follows from the above constructions that there is a one-to-one correspondence between the
roots of Eq. (2.24) satisfying inequality (2.23) and the fixed points of the mapping (1.17) belonging
to the interval (δ, 1). Let us write condition (2.23) in the equivalent form

z0(δ) < z < 1, (2.25)

where z0(δ) ∈ (0, 1) is the unique root of the equation z − 1− δ ln z = 0.
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Fig. 2.1. Graph of the function Ψ(z).

An easy verification shows that the function Ψ(z) defined in (2.24) has the properties

lim
z→z0(δ)+0

Ψ(z) = +∞,

Ψ(1− ν) = ν3

12

2δ − 1

(1− δ)2 +O(ν4), 0 < ν � 1.

Thus, under condition (1.5), Eq. (2.24) necessarily has at least one root on the interval (2.25).
As is proved by numerical analysis, this root is unique (see Fig. 2.1, which shows the graph of the
function Ψ(z) on the interval (2.25) for β = 0.44). However, we have not been able to justify this
assertion rigorously.

3. BILOCAL MODEL

A natural generalization of the model (1.3) is the so-called bilocal model [6], which is a system
of the form

Ṅ1 = r

(
1− N1

K

)
N 2

1 − aN1N3 +D(N2 −N1),

Ṅ2 = r

(
1− N2

K

)
N 2

2 − aN2N3 +D(N1 −N2),

Ṅ3 = λ

(
α
N1

K
+ (1− α)N2

K
− b

)
N3.

(3.1)

Here N1 and N2 are the prey population sizes, N3 is the predator population size, all the parame-
ters r, λ, a, b, D, and α are positive, and, in addition, α ∈ (0, 1). The quantities α and 1 − α are
the fractions of prey N1 and N2, respectively, in the ration of the predator N3.
It can readily be seen that after some normalization system (3.1) can be reduced to a form similar

to (1.4), namely,
ξ̇1 = (1− ξ1)ξ21 − ξ1y + d(ξ2 − ξ1),
ξ̇2 = (1− ξ2)ξ22 − ξ2y + d(ξ1 − ξ2),
εẏ = (αξ1 + (1− α)ξ2 − δ)y,

(3.2)

where 0 < ε � 1, d, δ = const > 0, and α = const ∈ (0, 1). It turns out that analogs of
Theorems 1.1 and 1.2 hold for the resulting system (3.2). Below we give the corresponding results
in a concise form.
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Fix an arbitrarily point ξ(0) = (ξ1,0, ξ2,0) ∈ R
2 whose coordinates satisfy the conditions

ξ1,0, ξ2,0 > 0, x0
def
= αξ1,0 + (1− α)ξ2,0 > δ. (3.3)

Further, let

Γ(ε) = {(ξ1, ξ2, y) : ξj = ξj(t, ξ(0), ε), j = 1, 2, y = y(t, ξ(0), ε), t ≥ 0} (3.4)

be the trajectory of system (3.2) with the initial conditions

ξj(0, ξ(0), ε) = ξj,0, j = 1, 2, y(0, ξ(0), ε) = 1.

We introduce the second positive root t = T (ξ(0), ε) of the equation y(t, ξ(0), ε) = 1 (if it exists)
and define a Poincaré map similar to (1.7) by

ξ(0) �→ Π(ξ(0), ε)
def
= (ξ1(t, ξ(0), ε), ξ2(t, ξ(0), ε))|t=T (ξ(0),ε). (3.5)

Our immediate goal is to describe the limit mapping Π(ξ(0)) to which this operator converges (in
the C1-metric) as ε→ 0.
Let us divide the trajectory Γ(ε) into the same segments Γj(ε), j = 1, . . . , 5, as in the case of

the trajectory (1.6). Note that the quantity x0 in (3.3) satisfies inequality (1.8). It follows that on
the takeoff segment Γ1(ε) the phase point (ξ1, ξ2 y) moves in an asymptotically small neighborhood
of the ray {(ξ1, ξ2, y) : ξ1 = ξ1,0, ξ2 = ξ2,0, y ≥ 1}, and in a time of the order of ε ln(1/ε) the
component y(t, ξ(0), ε) monotonously increases to reach the value ε−3/4.
On the segment Γ2(ε) of the trajectory (3.4) lying in the half-space {(ξ1, ξ2, y) : y ≥ ε−3/4}, in

system (3.2) we make the change of variables y = u/ε and adopt the variable x = αξ1 + (1− α)ξ2
for the new time. As a result, after discarding asymptotically small terms, we obtain a Cauchy
problem similar to (1.9) for the components u, ξj , j = 1, 2; namely,

du

dx
= −x− δ

x
, u|x=x0

= 0,
dξj
dx

=
ξj
x
, ξj|x=x0

= ξj,0, j = 1, 2,

whose solution is determined by the relations

u = u(x), ξj = ξj,0
x

x0

, j = 1, 2, (3.6)

where u(x) is the function (1.10).
It should also be added that, first, formulas (3.6) hold only on the interval x1 ≤ x ≤ x0, where,

as we remember, x1 is the root of the equation u(x) = 0 in the interval (0, δ); second, after switching
to the variables u, ξj , j = 1, 2, the curve Γ2(ε) ⊂ Γ(ε) tends, as ε→ 0, to the limit curve

Γ0
2 = {(ξ1, ξ2, u) : u = u(x), ξj = ξj,0x/x0, j = 1, 2, x1 ≤ x ≤ x0};

and third, the time of motion along Γ2(ε) is asymptotically small (more precisely, it is of the order
of ε ln(1/ε)).
The next segment Γ3(ε) resides in the strip {(ξ1, ξ2, y) : exp(−ε−3/4) ≤ y ≤ ε−3/4}. Since the

vector ξ(1) = (ξ1,1, ξ2,1), where
ξj,1 = ξj,0

x1

x0

, j = 1, 2, (3.7)

satisfies the inequality αξ1,1 + (1 − α)ξ2,1 = x1 < δ on the segment indicated, it follows that the
phase point (ξ1, ξ2, y) moves in an asymptotically small neighborhood of the segment{

(ξ1, ξ2, y) : ξj = ξj,1, j = 1, 2, exp
(−ε−3/4

) ≤ y ≤ ε−3/4
}
,

with the component y decreasing. At the same time, the time of motion along Γ3(ε) is of the
order of ε1/4.
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It is appropriate to refer to the segment Γ4(ε) of the trajectory (3.4) lying in the half-space
{(ξ1, ξ2, y) : y ≤ exp(−ε−3/4)} as the slow motion segment by analogy with the case of the
curve (1.6). When investigating this segment, in system (3.2) we switch to the variable v = ε ln y.
As a result, after dropping asymptotically small terms, we obtain the system

ξ̇1 = (1− ξ1)ξ21 + d(ξ2 − ξ1), ξ̇2 = (1− ξ2)ξ22 + d(ξ1 − ξ2), (3.8)

v̇ = αξ1 + (1− α)ξ2 − δ. (3.9)

As follows from the consideration of the previous segment, this system should be equipped with the
initial conditions

ξj|t=0 = ξj,1, j = 1, 2, v|t=0 = 0, (3.10)

where the ξj,1 are the components in (3.7).
Let (ξ1(t, ξ(1)), ξ2(t, ξ(1))), t ≥ 0, be the solution of subsystem (3.8) with the initial condition

(ξ1, ξ2)|t=0 = ξ(1). Then it obviously follows from (3.9) and (3.10) that

v(t) =

t∫
0

[αξ1(τ, ξ(1)) + (1− α)ξ2(τ, ξ(1))− δ] dτ. (3.11)

When analyzing the function (3.11), we will assume the following condition to be satisfied:

0 < δ < 1. (3.12)

Then this function has the properties

v(0) = 0, v̇(0) = αξ1,1 + (1− α)ξ2,1 − δ = x1 − δ < 0, and
v(t)→ +∞ as t→ +∞. (3.13)

Indeed, the first two of these properties are self-obvious. To prove the third property in (3.13), note
the following facts. First, the cone R

2
+ = {(ξ1, ξ2) : ξ1 > 0, ξ2 > 0} is invariant for the solutions

of system (3.8). Second, system (3.8) is dissipative in this cone. (All of its trajectories eventually
enter some set of the form R

2
+ ∩ {(ξ1, ξ2) : ξ21 + ξ22 ≤ r2}, r = const > 0.) Third, system (3.8) in the

cone R2
+ admits a unique exponentially stable equilibrium ξ1 = 1, ξ2 = 1 and cannot have cycles

(because it has the invariant ray ξ1 = ξ2 passing through this equilibrium).
Based on the above information about system (3.8), we conclude that for each ξ(1) ∈ R

2
+ one has

the relations
lim

t→+∞
ξ1(t, ξ(1)) = lim

t→+∞
ξ2(t, ξ(1)) = 1,

which imply that the integrand in (3.11) tends to the positive limit 1 − δ as t → +∞. Hence the
third condition in (3.13) follows automatically. Further, in turn, it follows from relations (3.13) that
there exists a T0 = T0(ξ(1)) > 0 such that

v(t) < 0 for 0 < t < T0, v(T0) = 0, v̇(T0) ≥ 0. (3.14)

Throughout the following, we assume that the last inequality in (3.14) is strict; i.e.,

v̇(T0) > 0. (3.15)

This inequality reflects some generality of the position and is a restriction for the choice of the initial
vector ξ(0).
Concluding the consideration of the segment Γ4(ε), notice that after switching to the variables

ξ1, ξ2, v, this segment tends as ε→ 0 to the limit

Γ0
4 = {(ξ1, ξ2, v) : ξ1 = ξ1(t, ξ(1)), ξ2 = ξ2(t, ξ(1)), v = v(t), 0 ≤ t ≤ T0}.

As for the time of motion along the curve Γ4(ε), this time tends to T0 as ε→ 0; i.e., it is asymptot-
ically finite.
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When considering the last segment Γ5(ε) of the trajectory (3.4), note that, by virtue of (3.15),
the vector

ξ(2) = (ξ1,2, ξ2,2)
def
= (ξ1(t, ξ(1)), ξ2(t, ξ(1)))|t=T0(ξ(1)) (3.16)

satisfies the inequality

(αξ1,2 + (1− α)ξ2,2 − δ)y > 0 for all y > 0. (3.17)

In turn, it follows from inequality (3.17) that the variable y is monotone increasing on the seg-
ment Γ5(ε) from exp(−ε−3/4) to 1, while the components ξ1 and ξ2 are asymptotically close to the
coordinates of the vector (3.16). The time in which this segment is covered is of the order of ε1/4.
To make the above constructions rigorous, one needs to apply the general theory of nonclassical

relaxation oscillations set forth in [3–5] once more. Based on the results in these publications, we
conclude that the following assertion holds.

Theorem 3.1. Assume that condition (3.12) is satisfied and one has arbitrarily fixed a compact
set Ω ⊂ R

2
+ in which each vector ξ(0) = (ξ1,0, ξ2,0) satisfies conditions (3.3) and (3.15). Then for all

sufficiently small ε > 0 the operator (3.5) is defined on the set Ω, and one has the limit relations

lim
ε→0

max
ξ(0)∈Ω

‖Π(ξ(0), ε)−Π(ξ(0))‖R2 = 0,

lim
ε→0

max
ξ(0)∈Ω

‖Π′(ξ(0), ε)−Π′(ξ(0))‖R2→R2 = 0.
(3.18)

Here the prime denotes the derivative with respect to the vector argument ξ(0) , and the limit opera-
tor Π(ξ(0)) has the form

Π = Π2 ◦Π1, Π1 : ξ(0) → ξ(1), Π2 : ξ(1) → ξ(2). (3.19)

It follows from relations (3.18) that to each fixed point ξ∗(0) ∈ Ω, exponentially stable or di-
chotomic, of the limit operator (3.19) there corresponds a nonclassical relaxation cycle with the
same stability properties in the original system (3.2).
Under conditions (1.5), system (3.2) obviously admits the so-called homogeneous cycle

ξ1 = ξ2 = x∗(t, ε), y = y∗(t, ε), (3.20)

where x∗(t, ε) and y∗(t, ε) are the components of the stable relaxation cycle (1.18) of system (1.4),
whose existence is stated in Theorems 1.2 and 2.1. The question about the stability of this cycle is
answered by Theorem 3.1, which implies the following result.

Theorem 3.2. The homogeneous cycle (3.20) of system (3.2) is exponentially orbitally stable for
all sufficiently small ε > 0 and for any fixed α ∈ (0, 1), d ≥ 0.

Proof. Let x0 = x∗0 be an exponentially stable fixed point of the mapping (1.17), whose existence
is guaranteed by Theorem 2.1. Then it is obvious that the two-dimensional mapping (3.19) has the
fixed point ξ∗(0) = (x∗0, x

∗
0), and conditions (3.3) and (3.15) are satisfied on the set

Ω = {(ξ1,0, ξ2,0) : (ξ1,0 − x∗0)2 + (ξ2,0 − x∗0)2 ≤ r2}
provided that r > 0 is diminished appropriately. Note that the fixed point ξ∗(0) in the original
system (3.2) is associated with the cycle (3.20). Based on this and Theorem 3.1, we conclude
that the stability properties of this cycle are determined by the nature of the arrangement of the
eigenvalues of the linear operator V : R2 → R

2, where

V = Π′(ξ∗(0)). (3.21)

To carry out the linearization (3.21) of the mapping (3.19) at the fixed point ξ∗(0) = (x∗0, x
∗
0), we

make some preliminary constructions. First, we substitute the expressions

ξj,0 = x∗0 + hj, j = 1, 2, x0 = x∗0 +Δx0, x1 = x∗1 +Δx1,
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into formulas (3.7), where, we recall, x∗1 ∈ (0, δ) is the root of the equation u(x) = 0 for x0 = x∗0
(see (1.10)). Note that, according to the equality for x0 in (3.3), the increments Δx0 and Δx1 in
the linear approximation have the form

Δx0 = αh1 + (1− α)h2,

Δx1 =
x∗1(δ − x∗0)
x∗0(δ − x∗1)

Δx0.
(3.22)

Considering the above, we conclude that, up to terms that have order higher than first in h1 and h2,
the following formulas hold:

ξ(1) = ξ∗(1) +Δξ(1), ξ∗(1) = (x∗1, x
∗
1), Δξ(1) = (Δξ1,1,Δξ2,1), (3.23)

where
Δξj,1 = hj

x∗1
x∗0

+Δx1 − x∗1
x∗0
Δx0, j = 1, 2. (3.24)

Now consider the vector ξ(2) and represent it in a form similar to (3.23) as

ξ(2) = ξ∗(2) +Δξ(2), ξ∗(2) = (x∗0, x
∗
0), Δξ(2) = (Δξ1,2,Δξ2,2), (3.25)

where Δξj,2, j = 1, 2, are some functions linear in h1 and h2. To this end, we need the linear system

ġ1 = (2x∗(t)− 3x2
∗(t))g1 + d(g2 − g1),

ġ2 = (2x∗(t)− 3x2
∗(t))g2 + d(g1 − g2),

(3.26)

in which, we remember, x∗(t) is the zero approximation to the component x∗(t, ε) of the cycle (1.18).
More precisely, we will be interested in the solution of this system with the initial conditions

g1|t=0 = Δξ1,1,

g2|t=0 = Δξ2,1,
(3.27)

where Δξ1,1 and Δξ2,1 are the increments (3.24).
A simple analysis shows that one has the following explicit formulas for the components of the

solution of the Cauchy problem (3.26), (3.27):

g1(t) =
ẋ∗(t)

2(1− x∗1)(x∗1)2
(Δξ1,1 +Δξ2,1 + (Δξ1,1 −Δξ2,1) exp(−2 dt)),

g2(t) =
ẋ∗(t)

2(1− x∗1)(x∗1)2
(Δξ1,1 +Δξ2,1 − (Δξ1,1 −Δξ2,1) exp(−2 dt)).

(3.28)

Based on this and (3.16) and considering the already established relations (3.22)–(3.24), we obtain
the desired relations (3.25) in which

Δξj,2 = gj(T∗) + (1− x∗0)(x∗0)2ΔT, j = 1, 2,

ΔT =
1

δ − x∗0

T∗∫
0

(αg1(t) + (1− α)g2(t)) dt
(3.29)

and T∗ is the quantity in (1.20). Finally, combining relations (3.25) and (3.29), we make sure that
the linear operator (3.21) acts by the rule

V : (h1, h2) �→ (Δξ1,2,Δξ2,2). (3.30)
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Summarizing, note that the explicit formulas (3.22), (3.24), and (3.28)–(3.30) derived above
make it possible to find the spectrum {λ1, λ2} of the operator V . An appropriate calculation leads
to the relations

λ1 =
x∗0(1− x∗0)
x∗1(1− x∗1)

,

λ2 =
x∗0(1− x∗0)
x∗1(1− x∗1)

exp(−2dT∗).

By virtue of the exponential stability of the fixed point x∗0 of the operator (1.17), we have

x∗0(1− x∗0)
x∗1(1− x∗1)

∈ (0, 1),

and hence λ1, λ2 ∈ (0, 1). The proof of the theorem is complete.
It is of interest to note that under certain conditions stable relaxation cycles other than the

homogeneous cycle (3.20) may exist in system (3.2). To elucidate what the matter is here, we first
assume that

d = 0, 0 < δ < (1− α)/2. (3.31)

In this case, system (3.2) admits a stable cycle of the form

(ξ1, ξ2, y) = (0, ξ∗(t, ε), y∗(t, ε)), (3.32)

where (ξ∗(t, ε), y∗(t, ε)) is a stable cycle of the auxiliary system

ξ̇ = (1− ξ)ξ2 − ξy,
εẏ = [(1− α)ξ − δ]y. (3.33)

Indeed, after the changes of notation ξ → x, δ/(1− α)→ δ, and ε/(1− α)→ ε, system (3.33) is
reduced to the form (1.4). Thus, under the above-imposed condition on the parameter δ (see (3.31)),
by virtue of Theorems 1.2 and 2.1, it necessarily has the cycle indicated. Further, reasoning in a
similar way, we conclude that for d = 0, 0 < δ < α/2, system (3.2) admits a stable cycle

(ξ1, ξ2, y) = (ξ∗(t, ε), 0, y∗(t, ε)), (3.34)

where (ξ∗(t, ε), y∗(t, ε)) is a stable cycle of the auxiliary system

ξ̇ = (1− ξ)ξ2 − ξy,
εẏ = [αξ − δ]y.

In the mapping (3.19), associated with the cycles (3.32) and (3.34) are the exponentially stable
fixed points

(ξ1,0, ξ2,0) = (0, x∗0(δ/(1− α))),
(ξ1,0, ξ2,0) = (x∗0(δ/α), 0),

(3.35)

where x∗0 = x∗0(δ) is an exponentially stable fixed point of the mapping (1.17) (here we explicitly
emphasize its dependence on the parameter δ). For small d > 0, stable fixed points close to (3.35)
are preserved but shifted inside the cone R2

+. In the original system (3.2), they are associated with
stable relaxation cycles transforming into the cycles (3.32) and (3.34) for d = 0. For α = 0.01,
δ = 0.3, d = 0.01, and ε = 0.01, the t-dependences of the coordinates ξ1, ξ2, and y for one of such
cycles are depicted in Fig. 3.1. The solid line in the figure indicates the graph of the function y; the
dotted lines, of the functions ξ1 and ξ2 (the graph of the component ξ1 lies below the graph of ξ2).
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Fig. 3.1. Dependences of the coordinates ξ1, ξ2, and y on t for nonclassical relaxation cycle.

In conclusion, let us dwell on two problems still awaiting solution.
The first one is related to the analysis of the attractors of the multidimensional system

ξ̇j = (1− ξj)ξ2j − ξjy + d(ξj+1 − 2ξj + ξj−1),

εẏ =

[
m∑
j=1

αjξj − δ
]
y, j = 1, . . . ,m, ξ0 = ξ1, ξm+1 = ξm,

(3.36)

where m ≥ 2, d, δ = const > 0, αj = const ∈ (0, 1), j = 1, . . . ,m, and
∑m

j=1 αj = 1. Of interest are
the questions of stability of the homogeneous cycle of system (3.36) and of the existence of stable
cycles distinct from the homogeneous one in this system.
The second problem is to extend the theory of nonclassical relaxation oscillations to a more

general mathematical model than (1.3),

Ṅ1 = r1

[
1− N1

K1

]
N 2

1 − aN1N2, Ṅ2 = r2

[
N1

K1

− b− N2

K2

]
N2, (3.37)

where r1, r2,K1,K2, a, b > 0. It can readily be seen that, after appropriate normalizations, sys-
tem (3.37) acquires a form similar to (1.4), namely,

ẋ = (1− x)x2 − xy, εẏ = (x− δ − cy)y, (3.38)

where 0 < ε � 1 and δ, c = const > 0. It can be shown that under the additional condi-
tions 0 < δ < 1, c = εα, and α = const ∈ (0, 1), analogs of Theorems 1.1 and 1.2 hold for sys-
tem (3.38). However, the question about the existence of exponentially stable fixed points of the
corresponding limit one-dimensional mapping remains open in this case.
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