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A B S T R A C T

We used statistical correlation functions (CFs) to describe food microstructure and to reconstruct their 3D
complexity by using limited information coming from single 2D microtomographic images. Apple fleshy par-
enchyma tissue and muffin crumb were chosen to test the ability of the reconstructions to mimic structural
diversities. Several metrics based on morphological measures and cluster functions were utilized to analyze the
fidelity of reconstructions. For the apple, reconstructions are accurate enough proving that lineal, L2, and two-
point, S2, functions sufficiently describe the complexity of apple tissue. Muffin structure is isotropic but statis-
tically inhomogeneous showing at least two different porosity domains which reduced the fidelity of re-
constructions. Further improvement could be obtained by using more CFs as input data and by implementation
of the techniques dealing with statistical non-stationarity. Novel stochastic reconstruction and CF-based char-
acterization methods could improve the fidelity of reconstruction and future advances of this technology will
allow estimating macroscopic food properties based on (limited) 2/3D input information.

1. Introduction

The need for characterization of 3D microstructure of food for un-
derstanding the role of 3D architecture in the sensorial and nutritional
properties as well as in microbial growth has been reported recently by
numerous authors (Aguilera, 2005; Parada and Aguilera, 2007; Datta,
2007; Takhar, 2016; Verboven et al., 2018). As the simplest digital
structure model, the food may be considered as a two-phase (binary)
system characterized by void (or pore) and solid material phases
(Derossi et al., 2014). Several examples that may be described using
such binary model include (but are not limited to) fruit and vegetables,
bread, roasted coffee, cakes, ice-cream, cheese, chocolate, etc. In ad-
dition, their complex macroscopic properties such as texture, heat and
mass transfer, gas diffusion, microbial growth and chemical reaction in
restricted mobility conditions, as well as sensorial features, cannot be
precisely explained and predicted without considering the nature of

food as complex 3D structures. So, the possibility to estimate these
properties from microscopic information, as well as their dynamics
during processing and storage would have a definite impact in many
practical applications. For instance, it is now acknowledged that for
fruit and vegetables the diffusivity of gases in 3D structure of par-
enchyma tissue is a key factor for maintaining cellular metabolism.
This, in turn, affects the evolution of fruit quality during storage
(Verboven et al., 2008; Herremans et al., 2014). Hafsa et al. (2014)
studied the three-dimensional properties of food agglomerates to im-
prove the understanding of the relationships between wheat powders
behavior during processing and the food products structure. Reinke
et al. (2016), who studied the microstructure of chocolate, proved that
the presence of cracks and voids created during processing may in-
crease the well known problem of chocolate blooming, because they
could act as channels for the migration of lipids. Datta (2007) study
showed that the pore connectivity of food, which is of great importance
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in food processing involving mass transfer, is tightly related with its
intrinsic permeability k. Parada and Aguilera (2007) highlighted the
importance of food microstructure on the bioavailability of several
nutrients. In short, structural information is of utmost importance to
assess macroscopic food properties numerically and to uncover the re-
lationships between these properties (such as taste, diffusivity, storage
capacity, etc.) and food's structure. Moreover, possible structural and
temporal variability of the structure cannot be studied without imaging
food samples.

Recent advances in imaging techniques, such as X-ray micro-
tomography (XCT), magnetic resonance imaging, and laser scanning
confocal microscopy, have provided a useful way for obtaining 3D in-
formation of food structure at various scales. However, these techniques
do not completely address the problem of the quantitative and quali-
tative characterization of microstructure. More specifically, the com-
monly employed quantities to describe food microstructure, such as
porosity and material fractions, mean cell size, fractal dimension,
connectivity, size distributions of voids and material elements (Hafsa
et al., 2014; Herremans et al., 2015a) furnish only a partial amount of
the information necessary to accurately describe the complexity of 3D
food structure, or are enough to assess only a limited number of im-
portant macroscopic properties. To accurately characterize any micro-
structure, the universal spatial correlation functions (CFs) are known to
be very useful mathematical descriptors suitable for binary hetero-
geneous systems (Torquato, 2002). Several CFs containing different
information about the structure at hand were proposed: the two-point
probability function, S2; the lineal-path distribution function, L(r); the pore-
size distribution function, p(r); the chord-length distribution function, p(r);
and the two-point cluster function, C2, to name a few (Smith and
Torquato, 1988; Lu and Torquato, 1992; Torquato and Lu, 1993;
Torquato, 2002). Historically, CFs have been widely employed in ma-
terial science (Rintoul et al., 1996a,b; Chan and Govindaraju, 2004;
Sheidaei et al., 2013; Guo et al., 2014) and digital rock petroleum en-
gineering applications (Manwart et al., 2000; Talukdar et al., 2002; Yin
and Zhao, 2014; Gerke et al., 2015) but later on established their way
into soil science (Gerke et al., 2012; Karsanina et al., 2015), and,
eventually, food science (Derossi et al., 2013, 2014, 2016).

It is well established that any digital structure can be fully char-
acterized by n-point correlation functions, where n is basically the
number of unique points (pixels/voxels) on the image of the structure
(Torquato, 2002). In practice, it is desirable to describe the structure
with as little number of descriptors as possible; in other words, utilize a
minimum number of different low-order CFs. Moreover, it was shown
that higher order correlation functions with n > 2 add only very lim-
ited additional information (Yao et al., 1993; Jiao et al., 2009). Using
information theory concepts it was also shown that, depending on the
microstructure complexity, a very limited number of CFs can be enough
to get a complete characterization (Gommes et al., 2012). The most
straightforward way to check if some structure at hand can be fully
described by a given set of correlation functions is to solve the inverse
problem – reconstruct the structure from the set of CFs. The very first
stochastic reconstruction technique was based on a Gaussian random
field (Quiblier, 1984; Adler et al., 1990). But as this approach is only
limited to the use of a two-point probability function, a more universal
approach suitable for any superposition of CFs and based on simulated
annealing (Kirkpatrick et al., 1983) was proposed and is known as the
Yeong-Torquato (Y-T) method (Yeong and Torquato, 1998a, 1998b).
The method consists in an annealing procedure which analyzes the
different states of a system starting from a random configuration and
evolving it towards ground state (having a minimum energy) with
correlation functions as close as possible to the reference system that we
are attempting to reconstruct, i.e. original apple tissue and muffin
structure in our case.

The comparison between the original representative volume ele-
ment (REV) and the reconstruction allows to analyze the ability of
different CFs to capture the essential microstructure properties of the

system under study. Furthermore, reconstruction of 3D microstructure
from 2D sectional images is of great important since obtaining 3D
images (e.g. by means of μCT methodology) is expensive and time
consuming. Also, obtaining accurate 3D pore space images is only
possible if the pore sizes are larger than the imaging resolution. When
3D imaging methods fail or are not readily available, the reconstruction
of 3D structure from 2D statistical information obtained from micro-
graph (e.g., SEM and FIB/BIB-SEM, including cryo-methods to preserve
soft matter structure) images is a very attractive solution. Moreover, for
hierarchical structures, i.e. where structural features such as pores, span
over several imaging scales, a single methodology to study structure
will either have insufficient imaging resolution or field of view. The
only way to solve this conundrum is to employ multiscale image fusion
(Gerke et al., 2015), which was recently successfully applied to a
number of different pore containing systems (Gerke et al., 2017;
Karsanina et al., 2018).

The Y-T technique and its modifications has been widely im-
plemented to reconstruct several heterogeneous systems such as digi-
tized model system (Rintoul and Torquato, 1997; Gerke et al., 2014),
gels (Rintoul et al., 1996a,b), sandstones (Coker et al., 1996; Manwart
et al., 2000; Yin and Zhao, 2014), galaxies (Jiao et al., 2009), shale rock
(Gerke et al., 2015), stainless steel containing filamentary ferrite (Guo
et al., 2014), pellets of α-alumina (Capek et al., 2009), soil (Karsanina
et al., 2015), and bi-continuous composite (Li et al., 2016). In a pre-
vious paper we analyzed the possibility to implement the Y-T method to
reconstruct representative 2D images of bread structure by using the
only information contained in the lineal-path distribution function
(Derossi et al., 2014). To the best of our knowledge, apart from this
paper, reconstruction methods of food microstructure lack in literature.
In particular, only Abera et al. (2014) tried to obtain a virtual gen-
eration of fruit tissue by statistical information while 3D stochastic
reconstruction of food by means of universal correlation functions mi-
crostructure was never attempted previously.

All aforementioned microstructure characterization issues moti-
vated current study. The aim of our work was to answer an important
question regarding food structure characterization: can a conventional
set of low-order correlation functions (preferably computed from one
only 2D cross-sectional image) fully characterize a variety of food mi-
crostructures?

To address this question, for the first time, we have implemented
the stochastic reconstruction procedure to reconstruct 3D micro-
structure of food from limited statistical information obtained from 2D
cross sectional images of two types of food: 1) apple parenchyma tissue,
and 2) muffin crumb. Also, we have examined the ability of a set of
directional correlation functions to accurately describe the micro-
structure of samples by comparing original and reconstructed 3D image
of food. Finally, we discuss all major advantages of correlation func-
tions and current pitfalls of stochastic reconstruction technology and
outline future steps to establish CFs as a routine approach to char-
acterize food microstructure.

2. Material and methods

2.1. Food samples and image acquisition

As objects of our study we choose two food samples of very different
genesis: 1) parenchyma tissue of the fleshy part of an apple, and 2)
crumb from muffin as highly porous cereal-based food. The choice was
motivated by a huge difference in microstructure of these two materials
which, as we shall see later, enabled testing characterization approach
using spatial CFs from diverse angles.

For the apple fruit samples, fruits of the cultivar Braeburn were
harvested from orchards in Belgium at optimal picking dates in October
2014 and transported to KU Leuven. Fruit were stored in controlled
atmosphere conditions until the time of X-ray imaging in January 2015.
Conditions were 1 °C, 2.5% O2,< 0.8% CO2 according to the
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recommendations of the Flanders Centre of Postharvest Technology
(www.vcbt.be). X-ray computed tomography was applied to visualize
the porous microstructure of excised cylindrical apple cortex tissue
samples according to the procedures of Herremans et al. (2015a) using
a Skyscan 1172 (Bruker-SkyScan, Belgium) scanner. This resulted in a
stack of cross-sectional images of the parenchymous cortex at 5mm
below the peel on the apple's equator. The cross sectional slices per-
pendicular to the fruit radius consisted of 1600 (x)× 1600 (y) pixels
with a pixel size of 4.9 μm.

Muffin samples were manually prepared in laboratory under ex-
perimental conditions reported by Severini et al. (2017). A subsample
of cylindrical shape was obtained by cutting along the length of the
sample by using a cork bore of 3 cm in diameter. Then the cylinder was
cut longitudinally to obtain a height of 3 cm. Cross sectional images of
1300 (x)× 1300 (y) pixels were acquired with a resolution of 18.83 μm
which was sufficient to accurately capture all major features of muffin
microstructure. The following conditions were used to obtain shadow
projections of the muffin's structure: exposure time of 2 s, average
images of four for each step angle of 0.2°, the energy of the X-ray tube
was 50 kV, which resulted in total scanning time of 2 h.

2.2. Image processing

Original XCT images represent grey-scale images where each voxel
has the intensity depending on X-ray absorption within respective
sample's subvolume. First, we crop a cubic region of interest from each
stack of images for both apple and muffin samples, 7003 and 8003

voxels, respectively. This is needed for a variety of reasons: 1) to re-
move all border effects due to sample's shape and imaging procedure, 2)
cubic subvolume is convenient for further processing, as it basically
represents a 3D matrix of same dimension, 3) the size of 700-8003

voxels is a good compromise between image representability and
computational efforts needed for its processing. The second crucial step
is image segmentation into two materials (or phases): pores and solids.
In this work we utilize converging active contours segmentation
method (Sheppard et al., 2004). This segmentation approach requires
two threshold confidence intervals (e.g., grey scale values that are pores
or material with a high degree of certainty) for each of the two phases

to be separated. All threshold confidence intervals were chosen
manually based on grey-scale histogram and trial segmentation runs. In
case of the apple grey scale 3D image, before segmentation we applied
non-local means filter (Buades et al., 2005) to improve signal-to-noise
ratio. All image processing was performed using in-house code devel-
oped by the FaT iMP research group (http://www.porenetwork.com).

2.3. Computation of CFs and stochastic reconstruction

To characterize microstructure and later on perform stochastic re-
construction we first compute a sets of directional correlation functions
(Kumar et al., 2006; Jiao and Chawla, 2014; Gerke et al., 2014) for 2D
and 3D images. In this study, three types of correlations functions were
employed: 1) the two-point probability function S2 describing the
probability that two points separated by a vector displacement r(x1, x2)
between x1 and x2 lie in the same phase; 2) the linear function L2 de-
scribing the probability that the whole segment r lies within the given
phase; 3) cluster function C2 describing the probability that x1 and x2 lie
in the same cluster (a 6-neibhours connected conglomerate of void/
pore voxels). Note that while S2 and C2 are computed for pore phase
only, the linear correlation function is computed separately for both
pore and material phases. There is no benefit in computing S2 for both
binary phases, as each one of them can be calculated from the other
(Torquato, 2002). We calculate S2 and L2 in two or three orthogonal
and two or six for diagonal directions, for 2D and 3D images respec-
tively, which are then used separately during reconstruction (Gerke
et al., 2014). The C2 function is evaluated in three orthogonal directions
for 3D images only, as connectedness information is fundamentally
different in two and three dimensions (Lee and Torquato, 1988;
Torquato, 2002; Čapek et al., 2009). All details of directional CFs
computation were previously described in detail, thus only brief de-
scription was provided here, for more information we refer to Gerke
et al. (2014) and Karsanina et al. (2015).

For any set of correlation functions considered in the 3D re-
construction technique, matching correlation functions of a given rea-
lization with an original reference structure is based on voxel permu-
tations (see general scheme on Fig. 1). If a set of two-point correlation
functions used in reconstruction is provided in the form of f r( )α

2 , where

Fig. 1. The general scheme of the study, including image processing, 2D-> 3D image reconstructions and their verifications by comparison against original XCT
images.
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α is a type of correlation function and r is a segment of varying length,
the difference between two realizations of the structure can be ex-
pressed as the sum of squared differences between sets of correlation
functions (Yeong and Torquato, 1998a; Gerke and Karsanina, 2015;
Derossi et al., 2016):

∑ ∑= −E w f r f r[ ( ) ˆ ( )] ,
α

α
r

2
α

2
α 2

(1)

where f (r)2
α and f̂ (r)2

α
are the values of the correlation function sets for

two realizations (where the former represents a reference food micro-
structure while the latter represents the food microstructure under re-
construction), wα is a weight factor used to improve convergence. In Eq.
(1), E represents the ‘energy’ of the system, which is minimized by the
simulated annealing algorithm. We start from a random structure and
change voxel positions, while checking the system's energy according to
Eq. (1). The Metropolis algorithm is used (Metropolis et al., 1953) for
the simulated annealing algorithm which describes the probability p of
accepting (or rejecting) each single random permutation of pixels be-
tween void and material phases (the examples of random structure
evolution are shown in Fig. 1 and in Fig. 1 in Derossi et al. (2014), very
detailed reconstruction process workflow scheme is available in Fig. 2
in Karsanina et al. (2015)) – e.g. between a single couple of black and
white pixels randomly choose and interchanged in 3D structure - in the
following way:

→ =
⎧
⎨
⎩

<

− ≥( )
ΔE

ΔEp(E E )
1, 0

exp , 0,Δold new E
T (2)

where T is the so-called ‘temperature’ of the system, and

= −Δ E E E .new old (3)

The initial temperature T is chosen so that the probability p for
ΔE≥ 0 equals 0.5 (Yeong and Torquato, 1998a, 1998b). We utilized the
following cooling schedule based on geometrical progression of the
form:

= −T(k) T(k 1)λ, (4)

where k is the time step and λ is a parameter smaller than but close to
unity. Note that k is simply a number of trial and error attempts of the
optimization procedure and does not represent any physical time; also
depending on the acceptance/refusal of the attempt the physical CPU
time needed for each time step may be different (and, thus, assessed in
bulk). We used the annealing schedule parameter λ=0.999999 for all
reconstructions.

To improve the speed of convergence, we adopted a relatively
simple permutation approach following Čapek et al. (2011) and Vesely
et al. (2015): 1) choosing a random location within a phase of interest,
and 2) choosing two random directions in which two pairs of pixels
with a minimum distance in-between are selected such that they satisfy
the conditions of lying in opposite phases and at the interface. The size
of all 3D reconstructions was 5123 voxels, which is a good trade-off
between the volume of the reconstruction and computational resources
required. We chose cut off length of r=250 for all CFs computations
and stochastic reconstructions, which actually makes sense as this va-
lues is half of the reconstruction size. Periodic boundary conditions
were applied for CFs evaluation during reconstruction procedure. Note,
that only conventionally applied S2 and L2 (for both pore and material
phases for linear function) correlation functions were utilized during
reconstructions (the use of the cluster function will be explained later).
This technically means that we reconstructed both void and material
phases at the same time (recalling the fact that computing S2 function
for both phases is impractical as mentioned earlier). The reconstruction
procedure was terminated after 106 consecutive unsuccessful permu-
tations. Weight factors wα were chosen according to the methodology
described in Gerke and Karsanina (2015).

One more important methodological aspect requires thorough

explanation. Namely, how do we perform 3D image reconstruction
from a 2D cross-section. At first, we need to choose such representative
2D image from the original 3D XCT image. This is done by subsequent
computation of pore fraction within each 2D cross-section along the
main direction of sample. The 2D image with porosity value closest to
that of the whole 3D image is chosen as the most representative cross-
section. The full set of directional S2 and L2 (both phases), 12 CFs in
total, is computed for such 2D data used as input data for stochastic
reconstructions. We start by a random mixture of pore and material
voxels (Fig. 1). Note, that the phase ratio between pores and material is
immediately known from the first momentum of any correlation func-
tion used, i.e., = = −S (0) L (0) 1 L (0)2

pores
2
pores

2
solids . The third “unknown”

dimension during reconstruction (which is not possible to be evaluated
from the input 2D image) is deduced as average of the respective di-
rectional CFs on the 2D image. For example, S2_Z is computed as an
average of S2_Y and S2_X (see Fig. 1 for schematic explanation). This
allows obtaining all CFs in three dimensions from a single 2D image.
After reconstruction is obtained, the CFs in all dimensions are computed
for both original and reconstructed images and compared to evaluate
the accuracy of this procedure. After target CFs set is created using
direct computations from input 2D image and extrapolating them into
unknown 3rd dimension (assuming that the sample is almost isotropic),
the random 3D voxel mixture is evolved by simulated annealing algo-
rithm (Eqs. (2)–(4)) to the state where the different between target and
current CFs is minimal. The resulting 3D image is the 3D stochastic
reconstruction.

All four stochastic reconstructions performed for this study were
successful in terms of simulated annealing procedure – energy ac-
cording Eq. (1) was cooled down to a group state, i.e., E→0. In practice
reaching exactly zero is too time consuming (Rozman and Utz, 2002)
and impractical for large reconstructed images. For each food sample
we have chosen two representative 2D images. Each such 2D cross-
section was used as input data for stochastic reconstruction as described
above with the volume of 5123 voxels. In this way we created four 3D
reconstructions, two for apple tissue and two for muffin. From now on
these stochastic replicas will be referred to as Reconstruction 1 and
Reconstruction 2 with either Apple or Muffin prefix.

2.4. Comparison of XCT and reconstructed 3D images using different
metrics

To verify the accuracy of the resulting stochastic reconstructions we
appeal to a wide variety of comparison metrics. First, we compare
original XCT and resulting reconstructions visually by visualizing their
microstructure. After such qualitative first check is performed, we
employ quantitative metrics such as: 1) connectedness difference (de-
fined below) computed with the help of C2 cluster correlation function;
2) structure thickness, which indicates the diameter of largest sphere
entirely bounded within the pore space (μm); 3) structure separation,
defined in the same manner, but computed for the material phase (μm);
4) number of pores), 5) pore size distribution, i.e., the distribution of
structure thickness parameter described above; 6) object surface/vo-
lume ratio (1/μm), indicating the ratio of material surface to volume
measured within the volume of interest; 6) surface convexity index (1/
μm). Except for the very first C2-based metric all characteristics were
computed using CTAn software (Bruker, SkyScan). The connectedness
difference was computed from evaluated C2 CFs according to:

=
∑ ∑ ⎡

⎣⎢
− ⌢ ⎤

⎦⎥Err
C r C r

N d

( ) ( )

( )C

r d
d d
2 2

2

2 (5)

where N(d)=3 is the number of directions for calculating the ortho-
gonal cluster function, rC ( )d

2 and rĈ ( )d
2 are the C2 CFs for the original

XCT and reconstructed microstructures, respectively. Computed in this
way, ErrC2 is simply a difference in cluster correlation function
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according to Eq. (1).
After all aforementioned metrics are computed one can easily access

the accuracy of the reconstructions by intercomparison of all computed
values between original XCT image and its stochastically reconstructed
3D replicas.

3. Results and discussion

3.1. Microstructure characterization of apple tissue and muffin structure

The porosity fractions computed for all cross-sectional images of
apple tissue are reported in Fig. 2a. The fluctuations between 14.36 and
17.54% well reflect the natural variability of fruit tissue structure.
However, when of the whole XCT image of 7003 voxels was analyzed,
the overall porosity fraction of 15.77% was obtained. These results
agree well with the data reported for Braeburn apples for which a
porosity fraction between 15 and 19.9% was measured from XCT
images (Herremans et al., 2014, 2015a). Also the figure shows two
cross-sectional images chosen to compute the correlation functions
employed as input data for stochastic reconstructions. Both slices
(n.254 and n.460) showed porosity values of 15.76% exhibiting a re-
lative difference from the whole XCT image below 1%.

Muffin samples showed a greater variability along Z-direction with
the 2D micro-CT slices having porosity fraction between 45.03% and
60.2% (Fig. 1b). This is more than expected since the microstructure of
muffins is subjected to many processing variables such as mixing con-
ditions, rheological properties, expansion and water evaporation during
baking, etc. Similarly, Van Dyck et al. (2014) who studied the changes
in microstructure of bread structure reported significant variations in
porosity across different regions of bread crumb. When the whole XCT
image of 8003 voxels was considered, a porosity fraction of 54.612%
was computed while 2D cross-sectional slices (n.257 and n.309) em-
ployed to compute target CFs exhibited a porosity of about 54.62%,
again, showing a relative difference below 1% (Fig. 2b).

Fig. 3 shows all CFs computed for binary XCT images of apple and
muffin. The shape of correlation decay for all functions confirms that
the cut-off r=250 pixels (or ≈1.2 mm and ≈4.7 mm for apple and
muffin, respectively) was enough to capture all important micro-
structure characteristics, including that of the solid phase (L2b). For
simplicity of interpretation we did not show diagonal CFs – they behave
more or less similar to orthogonal directions and substantially hamper

curve visibility.
We start with characterization of the apple microstructure (Fig. 3a).

At first, we immediately notice that all correlation functions exhibit the
same trend: X and Y directions agree almost perfectly, whilst the decay
in Z-direction is slower indicating a somewhat more connected struc-
ture. This means that apple microstructure is not perfectly isotropic, as
assumed in our stochastic reconstruction methodology, yet the degree
of anisotropy is not significant. Second, as cluster functions reach zero
values it means that void phase within apple sample does not percolate,
i.e., it does not form a (single) well-connected cluster of pores within
the sample and exhibits a certain level of separation formed by the
material phase between individual pores. Moreover, C2 decays similarly
to L2 function, which means that the connectivity is achieved only
within a single pore element – all pores are separated by tissue cells,
i.e., they do not agglomerate into clusters of pores connected via more
narrow throats (Miao et al., 2017), as we later observe for muffin.
According to the linear CFs the probability to find pores larger than
∼200 μm in X and Y directions is very low with L2 of 0.0006, while
pores are more elongated in Z-direction with a non-zero probabilities up
to a length of 350 μm. This indicates some variability of pore sizes and
shapes along the radial direction of the fruit, and such differences were
observed experimentally between the core, inner and outer cortex of
apples (Verboven et al., 2013; Herremans et al., 2015b).

Based on similar considerations, in a previous paper we have
quantified apple tissue by using statistical correlation functions
showing that the pores of Braeburn apples could be modeled with
spheres having an average diameter of ∼120 μm (Derossi et al., 2017).
Similarly, Herremans et al. (2015a) who studied the differences in
aeration of apple and pear structure, measured a void equivalent
spherical diameter of 100 μm for Braeburn apples. The decay of two-
point probability function, S2(r), shows a damped oscillating behavior
that is typical of theoretical system of interconnected particles (Smith
and Torquato, 1988). Based on all these considerations, it may be quite
possible to simulate the cell phase of apple tissue using grain-based
model with size distributions derived from CFs (Thovert and Adler,
2011). Moreover, as reported from Derossi et al. (2017) for apples, the
degree of connectivity of cell phase could be represented as an index of
as how densely the cells are packed in the tissue.

Fig. 3b shows that based on CFs analysis the muffin microstructure
is almost perfectly isotropic. We also observe that two-point probability
and cluster functions collapse on each other. The latter indicated that

Fig. 2. Porosity analysis in binary cross-sectional images of a) apple and b) muffin samples. Two representative cross-sections for each sample later used for
reconstructions are also inserted and their respective positions along Z-axis (slice number) are shown with grey arrows. Note that porosity values are scaled similarly
for both graphs to highlight differences in variability between food samples.
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all pores are connected, i.e., S2 representing the possibility that both
ends of the line segment fall into the same phase also falls in the same
pore cluster (C2) all the time. The muffin's structure is characterized by
pores which extend along three orthogonal directions up to 4.7mm,
although the probability to find a pore of such size drops below 0.01%.
For the solid phase (i.e. the crumb) a shorter range correlation was
observed which indicates that solids are mainly characterized by thin
crumb elements. For instance, the probability to find a solid element of
4mm thickness was lower than 1%. Linear functions showed values
greater than the 5% only for r < 1.62mm. By considering that the size
length of the sample is 15.05mm, muffin's crumb can be considered to
be very thin.

The analysis of XCT images by means of correlation functions and
porosity variations as shown in Fig. 2 allows to summarize some
properties of apple and muffin microstructure important for their
general microstructure characterization and stochastic reconstructions:
1) apple sample exhibited some degree of anisotropy in Z-direction, but
we still consider it to be isotropic enough for 3D reconstructions based
on 2D input image; 2) the fluctuations of porosity in Fig. 2a in the form
of white noise indicate that general homogeneity of the microstructure,
that is also an important requirement for CFs evaluation; 3) contrary to
the apple sample, muffin shows the signs of heterogeneity - significant
porosity fluctuations in Fig. 2b; approximately one third of the sample
along Z-axis has porosities below average, whilst the other two thirds
fluctuate above average porosity; 4) in general muffin's microstructure
seems to be very isotropic, except for minor anisotropy in the solid
phase, that may be the result of the aforementioned inhomogeneity.

3.2. Stochastic reconstructions and their quality

In all cases the energies fell below 10−9 and we can safely conclude
that global energy minima were achieved. Stochastic reconstructions
consisted of 5123 voxels and it took on average approximately 0.227 s
to perform 1000 permutation with i5 CPU on a regular laptop com-
puter. With very strict annealing termination criterion described in
Methods section it took on average ∼5.38 days to finalize each re-
construction. Note that as was argued by Gerke et al. (2015), all re-
construction parameters and especially termination criterion (106

consecutive unsuccessful permutations) drastically affect computation
time, thus decent accuracy of the reconstruction can be achieved within
much less timeframes.

We start the comparison between original XCT images and their
stochastic replicas by visually assessing the similarities between mi-
crostructures shown in Fig. 4. By first looking into 3D visualizations we

notice that apple reconstructions resemble the original XCT image
closely, which is further evidenced by looking at 2D cross-section on the
right hand side of the figure. For the muffin sample the comparison is
not that favorable anymore. While in general we do observe somewhat
similar aggregations of solid phase separating large voids, a closer look
reveals notable differences in pore and crumb shapes and connectivity.
More specifically, crumb agglomerates seem to be less connected and
some are hanging in void phase, which is unphysical. Especially evident
from 2D cross-sections, reconstructed muffin pores are less round and
can be characterized as rugged or dissected. Moreover, small-sizes pores
within muffin's crumb are considerably underrepresented.

To make the comparison more quantitative we now perform gra-
phical juxtaposition of correlation functions computed for 3D XCT
images and stochastic replicas. As was explained in the Methodology
section, cluster function was not utilized for reconstruction and, thus,
serves as a separate accuracy measure. In addition to C2 it is actually
still very useful to look at S2 and L2 functions, as stochastic re-
constructions were performed based on CFs computed from the single
2D cross-sections. Moreover, as microstructure statistical descriptors in
Z-direction were deduced as averages of these for X and Y directions it
is interesting to check if this third unknown from 2D images direction
was correctly represented in stochastic replicas. Note that original XCT
CFs are exactly the same as on Fig. 3, but will be presented again on
Figs. 5 and 6 for the ease of comparison against CFs of the reconstructed
microstructures.

The CFs results for the apple sample are presented at Fig. 5. What is
immediately evident for both reconstruction 1 (Fig. 5a) and re-
construction 2 (Fig. 5b), is that all CFs in Z-direction were not accu-
rately captured by averages along X and Y axes. We recall that this
difference in the Z-direction is most likely due to the sample orientation
within the apple and represents the anisotropy in the radial direction on
the apple's equator, which could be the result of the cell growth. This
could be fixed by taking two cross-perpendicular 2D slices through the
apple structure and creating target CFs set in all directions (Jiao and
Chawla, 2014). The two-point probability functions for reconstructions
exhibited some visible fluctuations not visible on original CFs. This is
easy to explain, as all reconstructions are based on a single 2D image
and, thus, represent CFs for this image. On the other hand, CFs of ori-
ginal XCT image are computed across full stack of 2D images (forming
the 3D image), that form a much smoother curve. Such differences
between 2D and full 3D sample CFs may be also seen as a measure of
representability. The most surprising result came from C2 function
comparison – unlike the original apple microstructure, the pore space in
both stochastic replicas percolated in all three major directions. It is

Fig. 3. All sets of correlation functions (two-point probability S2, linear L2 for both void and material (cells or solid) phases, and cluster function C2 for pores)
computed in three major orthogonal directions for a) apple and b) muffin samples based on their whole 3D XCT images.
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generally acknowledged that stochastic reconstructions based on S2 and
L2 CFs result in lower connectivity pore geometries for low porosity
structures (ε<30%), which is not the case here. Reconstruction 2
(Fig. 5b) had slightly less connected void phase than that of the Re-
construction 1 (Fig. 5a).

If we compare CFs between original XCT and reconstructions for
muffin sample (Fig. 6), the agreement is actually much better than for
the apple. For this reason, we have chosen to plot CFs for both of them
together. All C2 and S2 functions agree quite well, while fluctuations are
visible for these functions and can be explained in the similar manner,
as it was done for the apple sample earlier. The linear functions for the
crumb phase agree perfectly, whilst L2 for the void phase show some
slight degree of discrepancy, but, again, the Z-direction dominates in
this respect.

The important morphological characteristics computed for original
XCT and reconstructed images for both samples are reported in Table 1,
while Fig. 7 shows pore-size distributions. As expected, void phase ra-
tios agree well for all four reconstructions, as the zeroth moment of all
CFs employed here immediately provides the relevant (void or solid)
phase fraction. All very minor differences in porosity is only due to the
differences between 2D cross-sections and 3D XCT images (Fig. 2). The
total number of separate pores was higher in 3D reconstructions than in
original XCT images for the apple sample. This, in turn, resulted in
somewhat higher surface/volume ratios for stochastic replicas. Surface
convexity index for apple microstructure was very well represented in
reconstructions. Structure thickness (i.e., average pore size from in-
scribed spheres) is perfectly reflected according to the pore size dis-
tribution reported in Fig. 7a. The reason for very small deviations in
thickness parameter and size distribution for largest pore voids (the tail
of the distribution) is due to representatively issues with 2D cross-sec-
tion used for reconstructions – statistical descriptors capture only the

size of the pores available on the input 2D slice, whilst original apple
XCT image has larger pores within its volume. Structure separation
(i.e., average apple cell size from inscribed spheres) values are sig-
nificantly smaller for apple stochastic replicas, which is mainly due to a
larger number of small pores scattered within the solid phase (as evi-
dent from higher number of objects). The overpredicted connectivity of
the pore space discussed in Section 3.1 is also evident from the com-
puted ErrC2 (Table 1).

The number of pores for the muffin was very close if compared
between XCT image and stochastic replicas. Yet, the rest of the mor-
phological characteristics suffer from considerable disagreement. The
surface/volume ratio for the void phase was an order of magnitude
lower on reconstructed microstructures. Moreover, convexity index for
pore-solid interface was also much lower and very poorly represented
by stochastic reconstructions. This can be explained from the viewpoint
of the pore shapes (e.g., see 2D slices on Fig. 4) and absence of smaller
pores within the crumb as discussed above. The average pore size
(structure thickness) for the XCT image is two times larger than for the
stochastic replicas. The absence of the smaller pores within the crumb
and largest pores between the crumb agglomerates is immediately
evident from the pore-size distributions (Fig. 7b). Structure separation
for replicas shows somewhat higher values with a difference no more
than 20%. This implies that crumb is slightly thicker compared to the
original XCT muffin image. The connectivity difference error for muffin
reconstructions (Table 1) is much lower compared to the apple replicas,
but further inference is hampered by the presence of two porosity do-
mains (as will be discussed in the next Section).

All in all, 3D stochastic reconstructions based on a single 2D slice
worked generally well for apple microstructure, but failed to represent
numerous important characteristics of both pores and crumb phases for
muffin sample.

Fig. 4. Visualizations of 3D pore-solid structure for original XCT images and their stochastic replicas of a) apple and b) muffin samples. Pores are shown in blue, while
solid phase is in red. The right part of the figure presents some examples of 2D cross-section through the original XCT microstructure and its stochastic re-
constructions for improved visibility. Note that all 2/3D images are scaled to represent the differences in image sizes (image resolutions are the same). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Comparison between original 3D XCT images of the apple tissue and both of its reconstructions in terms of correlation functions computed in three orthogonal
directions.

Fig. 6. Comparison between original 3D XCT images of muffin and its reconstructions in terms of correlation functions computed in three orthogonal directions.
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3.3. General discussion and outlook

The main question that arises after analysis of all results presented
above is – what was the reason for some aspects of microstructure to be
represented perfectly by stochastic reconstructions, especially for apple
sample, while many characteristics of the muffin sample were re-
presented poorly? Based on all results and detailed analysis presented
above we believe that there are three main reasons for this to happen:
1) insufficient representability of the input 2D cross-sections used to
compute target CFs sets; 2) statistical inhomogeneity of the structures
under study (for muffin samples); and 3) insufficiency of two-point
probability and linear correlation functions to fully describe food mi-
crostructure. Clear explanation of all of these issues requires more
elaboration.

If we consider again the porosity variations within 2D slices shown
in Fig. 2, for apple we observe some steady fluctuations around the
average porosity value. Both representative slices we chose to re-
construct apple's microstructure not only matched the average porosity,
they also had CFs very close to that of the whole 3D image of original
apple tissue structure (Fig. 5a), which in turn ensured that CFs (except
for C2 function) for 3D stochastic replica will match XCT image very
closely. It is also important to clarify in this context, that as both 2D
slices provided directly only CFs in X and Y-directions, here we mean
the agreement in these two directions. Pore sizes are quite evenly dis-
tributed within the apple sample (as visible on Fig. 4a), thus, all pore
sizes and shapes are present on the input 2D images. This, in turn,
ensured that reconstructed 3D images had pore size distributions that
matched the original XCT image closely (Fig. 7a). In short, for apple the
chosen 2D slices were representative not only in terms of porosity, but
also in terms of microstructure – CFs, pore sizes and shapes. Yet, we
observe on Fig. 4a that original apple microstructure includes both

evenly porous regions, which are nicely reproduced on stochastic re-
plicas, and sparsely porous regions not present on reconstructions. This
implies that apple structure is not strictly statistically homogeneous,
and such porosity non-stationarities were not sampled by representative
2D slices. More even porosity distribution on the reconstructed images
can partially explain why replicas turned out to be more connected than
XCT microstructure. This is evident on the right side of the Fig. 4a
where very similar porosity distributions on original and reconstructed
2D images are apparent. As was pointed out previously by Karsanina
et al. (2015) – while image homogeneity is assumed in conventional
reconstruction techniques, it is never rigorously confirmed numerically.
Moreover, one could expect that majority of natural microstructures
(food, rocks, soils and such) are never strictly statistically homo-
geneous. If stochastic reconstructions were produced from CFs com-
puted from the whole 3D XCT image, we expect that such minor in-
homogeneities would be reproduced by our methodology, but this
requires confirmation in the future research.

The muffin case is more complex – from the porosity analysis on
Fig. 2b and visual porosity distribution (see Fig. 4b) we infer that all
aforementioned reasons had their place for this sample. Porosity var-
iation within 2D slices along Z-direction indicates that one third of the
sample has porosity below average (the upper part on Fig. 4b), whilst
due to the presence of the large pores in lower part of the 3D micro-
structure other two thirds have higher than average porosity. Both 2D
slices chosen as input images are unlikely to be representative, as they
were taken from the transition zone between these two low and high
porosity domains. This conclusion is partially supported by pore size
distribution (Fig. 7b) and morphological characteristics (Table 1) dis-
agreement. Another factor – statistical inhomogeneity of the muffin
microstructure - is actually a two-fold problem. Not only there is an
inhomogeneity in terms of porosity variations in 2D slices, but another

Table 1
Main morphological characteristics of 3D microstructure of original XCT images and their stochastic reconstructions.

Morphological properties Apple Muffin

Original XCT Recon.1 Recon.2 Original XCT Recon.1 Recon.2

Void fraction 15.69 15.66 15.65 54.62 54.62 54.59
Number of pores 7546 12055 17480 2025 2612 2398
Surface/volume ratio for pores 0.06982 0.08411 0.08357 0.0733 0.00785 0.00771
Surface convexity index 0.03381 0.04365 0.04392 0.00446 −0.00014 0.00019
Structure thickness 65.62 57.64 59.43 1016.04 537.67 558.344
Structure separation 160.67 118.48 118.17 314.25 367.99 370.11
Connectedness difference ErrC2 0 0.02857521 0.02047631 0 0.00686339 0.01123981

Fig. 7. Pore-size distributions within original XCT images of a) apple and b) muffin and their stochastically reconstructed counterparts.
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non-stationarity is clearly observed within separate slices: smaller and
somewhat isolated pores are present within the crumb, while larger and
highly connected pores separate crumb agglomerates. These two dis-
tinct porosity domains have different microstructure and, thus, re-
constructions based on ensemble averaged directional CFs show only
very limited distinctions between them. It is worth to note that it is not
possible to separate stochastic reconstruction inaccuracies resulting
from 2D slice non-representability and non-stationarity of the original
microstructure. Interestingly, although CFs, including cluster function
C2, for original muffin XCT image and reconstructions (Fig. 6) agree
closely, due to non-stationarity issues this does not guarantee accurate
stochastic replication. Unlike for the apple microstructure, we do not
expect that performing reconstruction based on original XCT image
would improve the quality of the replicas significantly. Thus, statistical
inhomogeneity poses an important problem that requires its solution for
food engineering applications.

After we have identified the reasons for stochastic reconstruction
inaccuracies in case of apple and muffin microstructure, the next
question is if we can prevent them and how? To address non-re-
presentability issue, a number of solutions could be utilized such as: to
utilize a larger field-of-view 2D image that includes all pores sizes and
porosity zones or to reconstruct from more than one 2D slices (e.g.,
Karsanina et al., 2018). In the latter case the usage of cross-perpendi-
cular cuts would also address the problem with slight Z-direction ani-
sotropy experienced in this work, or even allowed to reconstruct ani-
sotropic microstructures. Using, for example, Y-Z averaging instead of
taking slices along Z-direction would not improve the results obtained
in this work significantly and, thus, was not attempted. It seems always
more beneficial to perform reconstruction from 3D images, but using a
limited structural information as input data is useful in many instances,
especially then 3D imaging is not readily available. There are also
plenty of options for addressing the statistical inhomogeneity issue.
Variation of porosity along Z-direction (as in muffin sample) or pre-
sence of the loose porosity subvolumes (as in the apple microstructure)
can be fixed by separate reconstruction of statistically homogeneous
portions of the image (Tahmasebi and Sahimi, 2015). The case of dif-
ferent porosity domains within and in-between muffin crumb can be
effectively addressed by their separate reconstruction with subsequent
fusion (Gerke et al., 2015; Karsanina et al., 2018). Karsanina et al.
(2015) extensively discussed the problem of inability to describe any
structure at hand by S2 and L2 CFs using the concept of information
content developed by Gommes et al. (2012). This problem is probably
the hardest to address, but in general it is possible to increase the
number of correlation functions (Torquato, 2002) employed for re-
construction until stochastic replicas will represent the original with
desired accuracy. This paragraph is more of the outlook, but while all
proposed solutions are beyond the scope of this work and will be ex-
plored in the future, it is important to highlight that solutions are
available, yet require adaptation for food engineering research.

4. Conclusions

We have presented the first results on the capability to mimic 3D
structure of food specimens, apple tissue and muffin, by reconstructing
their microstructure using limited statistical information from single 2D
images. In short, lineal-path and two-point probability functions were
employed as input data to test the capability to create replicas of the
food. In the case of apple tissue the reconstructions matched the ori-
ginal 3D image well, although we have revealed a slight degree of
anisotropy in the direction not captured by the input 2D slice. For
muffin, previously developed conventional approaches showed very
limited accuracy due to insufficient representability of the input 2D
image(s) and due to the structural complexity consisting of at least two
different porosity domains. Novel stochastic reconstruction and CF-
based characterization methods should be specifically developed or
adapted in the future to improve the fidelity of 3D reconstruction.

Current results have opened the way of mimicking food microstructure
and have the potential to provide robust tools for estimation of the
essential macroscopic properties of food based on limited 2D informa-
tion.
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