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Abstract. The paper presents analytical estimates of the proximity of solutions to boundary value problems for elastic-creeping layered composite materials, which are widely used in construction, and must withstand loads for a long time, and the corresponding averaged model for such a material.  The estimates show the possibility of using the averaged model over a long time interval for the problem of loading by a constantly acting force action. Previously, this statement was substantiated by numerical experiments comparing the solutions of boundary value problems for the effective (averaged) model and direct numerical calculation using the original model for a highly inhomogeneous layered material. Analytical estimates are based on previously obtained estimates of the proximity of solutions to stationary problems of elasticity theory. The problem under consideration is reduced to such problems using the Laplace transform in time. Next, we analyze analytically the dependence of the estimates for stationary problems with a complex parameter of the Laplace transform on this complex parameter, and the reverse transition to the original variables (time and spatial coordinate) is performed.  The method used in this work for estimating the proximity of solutions for the averaged and original boundary value problems can also be used in the study of dynamic problems of viscoelasticity.  It should also be noted that for the one-dimensional model considered in this work, an interesting property has been established: if the constitutive relations for various phases are written as dependences of deformations on stresses, then the coefficients for the same form of writing the constitutive relation of the averaged model are obtained as simple weighted averages of similar coefficients for individual phases.
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1 Introduction
Layered composite materials are used in construction, mechanical engineering, aircraft construction, instrument making, chemical and petrochemical industries, and a number of other industries. They are used as supporting structures, adapters, fixtures and parts with special properties. Composite materials have a unique set of mechanical and performance properties. Their use allows you to create new designs with high performance and reliability. Usually these materials are used for long periods of time.
In this paper, we investigate the application of the averaging method over long time intervals to the study of composite materials. The first examples of the application of the averaging method to problems of elasticity theory are given in [1-4]. The theory of creep, the hereditary theory of elasticity, the theory of long-term strength as applied to concrete, metals at high temperatures, to high-molecular compounds are presented in [5-7]. 
A feature of the problem considered in our article is the analysis of the possibility of applying the averaging method (which for problems in the theory of elastic composites is described in [8-10]) on a large interval time, that is, for the process of "long-term loading" of a specimen from a composite material. The question of using the averaging method for composites from elastically creeping phases was considered in a number of works, for example, [11-14]. 

 Problems for a thin periodically perforated elastic rod were considered in [15-18]. In these works, the goal was to determine the effective characteristics for bending, tension, torsion in explicit analytical form. An example of the application of the averaging method for a bar of variable cross-section when it hits a rigid limiter is given in [19].
 The work [20] investigated the question of the so-called "averaging method" limits of applicability for a layered elastic-plastic layered composite. In [20], using a direct numerical experiment, it was shown that when the number of layers in a sample of an elastic-creeping composite is more than ten, the averaging method can be applied to solve the problem of long-term loading of a layered sample. In this case, in a direct calculation for a highly inhomogeneous medium, the finite element method is used with the linear dimensions of finite elements several times smaller than the thickness of the layer in the sample of the layered composite.  Naturally, the question arises about the rigorous derivation of analytical estimates for the proximity of solutions obtained using the method of averaging solutions to the problem of long-term loading of a sample with the solution of the original (non-averaged) problem for a strongly inhomogeneous material. It is clear that such estimates should include the loading time, the number of layers in the sample, the magnitude of the applied permanent load, and other parameters of the problem, including the geometric parameters and the parameters of stiffness and creep of individual phases of the composite.  An estimate this kind of proximity is given in this work. In this case, such an analytical estimate is derived for the simplest one-dimensional problem, which can be called the "rod approximation" in the one-dimensional problem of the theory of elasticity.  However, even for such a problem, obtaining an analytical estimate for the proximity of the solution to the original boundary value problem and the solution of the corresponding boundary value problem for the averaged model is not a trivial question, because we are talking about an asymptotically large time interval over which the solutions are compared. The estimates presented in this paper are based on similar estimates for the solutions of stationary problems of elasticity theory, which were obtained in [1].
2 Problem specification and decision 
We consider a one-dimensional system consisting of sections of a viscoelastic material that have different characteristics and alternate with a period 
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 is a small parameter.  We will assume that there are two phases of the composite material.  Within one phase, the viscoelasticity characteristics do not depend on the spatial variable  x. The length of the segment occupied by the composite material of two phases is equal to L, The length of one periodicity cell is 
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 is the number of such cells (Fig.1).
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Fig. 1. A viscoelastic material composed of two alternating phases.
Our task is to describe the dynamics of such a system on average when 
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, that is, build an average, or effective model of the described system.  To do this, we will define the constitutive relations for each of the two phases of the composite.  Let 
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 be respectively, the stresses and strains of each of the two phases, 
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, the connection between them is given by the relation
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and the inverse relation
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For Laplace images 
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 these relations take the next form
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Here p is a complex parameter, the Laplace transform of a function 
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 is given by formula
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If the estimate 
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 is fulfilled, then the function 
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, as is well known, is analytic in the right half-plane 
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 (Fig. 2). 
The inverse Laplace transform is given by the formula
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Fig. 2. The plane of the complex parameter p. When calculating the inverse Laplace transform, the integration is performed along the dashed line.
Let 
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 be the displacements of points of the considered composite material, and the deformation is 
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Let the system be fixed at two points 
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, and an external force 
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 acts on it. Then the equation of quasi-static equilibrium of the creep process of the considered composite, together with the boundary conditions, takes the form  
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Here 
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, of which the material is composed with alternating phases.
The Laplace transform in (7) leads to the following equation and boundary conditions
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where p is the complex parameter in the half-plane 
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For a fixed p, the asymptotic behavior of the solution to problem (8) for 
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 has been well studied [1].  Here it was proved that the solution of problem (8) tends for 
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In this case, the value 
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 is given by the formula 
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Here H is a layer thickness (in the notation used in [1]).
For solutions of problems (7) and (8), the following estimate is valid: 
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Formula (11) does not yet make it possible to pass to the original variables and obtain an estimate for the proximity of solutions to the original and averaged problems in these variables.  Indeed, the constants 
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 depend on the complex variable parameter p, and when using formula (6) for the inverse Laplace transform, to estimate the integral, explicit estimates are needed for these constants as functions of  p. These estimates will be given for 
[image: image48.wmf]i

K

 and 
[image: image49.wmf]i

Q

 kernels of a particular type. And now we note that formula (10) can be written in a different form.  Note that it follows from relations (3), (4) that 
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Hence 
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Formula (14) states that when averaging the constitutive relation (1) in the form of a dependence of displacements on stresses, it is possible to average it directly. Namely, instead of constant compliance and convolution kernels for two different phases, their usual weighted average should be taken. 
Let us now take as the creep kernels 
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, that are the Abel kernels for each of the two phases.  The constants 
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. Since the Laplace transform of the function 
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, it is easy to obtain that in (8) the upper and lower estimates will be uniformly bounded in p on the line 
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. The latter circumstance allows us to pass to the initial variables and obtain the next estimate  
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Note that the creep value of the composite specimen under constant load will be determined by the simple weighted average of the creep kernels. Let us denote the difference 
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. The next estimate was received: 
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So, the error estimate is obtained
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If 
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3 Conclusions 
Estimate (18) allows us to assert that the averaging method is applicable for the problem under consideration over a time interval whose length tends to infinity with a simultaneous increase in the number of layers in the sample and a decrease in the thickness of each layer.  Thus, it is obvious that if the length of the time interval increases as the square root of the reciprocal of the length of the periodicity cell (the total length of two adjacent layers) 
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, then our estimate will give the accuracy of the averaging method over such an asymptotically large time interval of the order of the square root of 
[image: image74.wmf]ε

. We do not claim that the obtained estimate is accurate in terms of the powers of the parameters 
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 and T, the accuracy of the estimate is the subject of further research. However, in our opinion, estimate (18) is an indication of the possibility of effective application of the averaging method for problems of long-term loading of composite materials composed of elastically creeping homogeneous phases. Work on the study of long-term loading of such materials is necessary and important, since many composites in construction are subject to the action of precisely long-term loads.
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