МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭКСПЕРИМЕНТАЛЬНОЙ МИНЕРАЛОГИИ ИМЕНИ АКАДЕМИКА Д.С. КОРЖИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

РОССИЙСКОЕ МИНЕРАЛОГИЧЕСКОЕ ОБЩЕСТВО

ХІІ ВСЕРОССИЙСКАЯ ШКОЛА МОЛОДЫХ УЧЕНЫХ «ЭКСПЕРИМЕНТАЛЬНАЯ МИНЕРАЛОГИЯ, ПЕТРОЛОГИЯ И ГЕОХИМИЯ»

посвященная 95-летию со дня рождения академика В.А. Жарикова

СБОРНИК МАТЕРИАЛОВ

26-27 октября 2021 г.

Черноголовка

ФАЗОВЫЕ ОТНОШЕНИЯ В СИСТЕМЕ FE-NI-S И СОПОСТАВЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ С СОСТАВАМИ СУЛЬФИДНЫХ ВКЛЮЧЕНИЙ В ПРИРОДНЫХ АЛМАЗАХ

Шарапова Н.Ю.^{1,*}, Бобров А.В.¹, Спивак А.В.². ¹МГУ имени М.В. Ломоносова (г. Москва), ²ИЭМ РАН (г. Черноголовка). ^{*}sharapovaninel@gmail.com

Изучение минеральных включений в алмазах позволяет получить информацию о процессах, ответственных за минералообразование, предположить вероятные среды их нуклеации и роста.

Являясь одними из самых распространенных, сульфидные включения в алмазах могут предоставить сведения о природе сульфидных расплавов, участвующих в формировании алмаза в мантии Земли. Экспериментально было установлено, что нагревание алмазов под давлением до температуры, превышающей температуры плавления сульфидов не меняет положения сульфидных включений [1]. Соответственно, можно предположить, что захваченные сульфидные включения остаются стабильными в природных алмазах в течение их пребывания в мантии в период после кристаллизации и изучение их поведения при высоких температурах и давлениях напрямую связано с условиями и средой образования алмазов [1]. Кроме того, их химический состав позволяет идентифицировать Р – перидотитовый и Е – эклогитовый тип парагенезисов [2], что является полезным дополнением к традиционному использованию силикатных и оксидых минералов для разделения минеральных ассоциаций включений в природных алмазах.

Характерным включением является моносульфидный твердый раствор Mss, состав которого описывается системой Fe-Ni-Cu-S. Однако большинство сульфидных включений в алмазах, особенно относящихся к перидотитовому парагенезису, содержит лишь небольшое количество Cu, поэтому важным является установление фазовых отношений в системе Fe-Ni-S.

Для ее изучения использовались результаты экспериментов, поставленных при параметрах алмазообразования (P=7,0 ГПа и T=900–1700°C) на твердофазовой установке типа «наковальня с лункой» НЛ-13Т. Исходным материалом послужили гомогенизированные смеси синтезированных сульфидов железа и никеля и твердые растворы на их основе. Синтез проводился с использованием метода кварцевых ампул при температурах T=300–400°C в зависимости от состава. Серия сульфидов включает в себя соединения и члены твердых растворов (мол.%) на основе FeS–NiS с соотношениями: 10–90, 25–75, 50–50, 75–25, 90–10.

Образцы изучались в отраженном свете на наличие структурно-текстурных особенностей, после чего их фрагменты были запрессованы в шашки из эпоксидной смолы и отполированы. Установление морфологии поверхности, выделение фазового контраста и химической гетерогенности производилось с помощью сканирующей электронной микроскопии, а состав полученных фаз уточнялся методом электронно-зондового анализа.

По выявленным морфологическим особенностям и фазовому составу образцы можно разделить на три типа:

Первый тип - это сульфиды с изометричными, обычно ксеноморфными выделениями, в которых содержится большое количество мелких округлых пор (рис 1). В них достигались условия полного плавления, хорошо выражены закалочные структуры в виде светлых полос сульфидного расплава.

Структуры следующей серии образцов характерны для более низких температур. На поверхности выделяются вкрапленники, представленные Mss на основе Fe или Ni, погруженные в закаленный сульфидный расплав (рис 2.). Вид образцов позволяет предположить, что в данном случае мы имеем дело с условиями частичного плавления.

Рисунок 1 Обр. 961 Fe_{0.25}Ni_{0.75}S T=1000°C

Рисунок 2 Обр. 964 Fe0.5Ni0.5 S T=1380°C

Для третьей группы, полученной в опытах, соответствующих субсолидусной области, характерным является отсутствие закалочных фаз и соответствие состава полученных сульфидов исходным смесям.

Рисунок 3 Обр. 947 Fe_{0.5}Ni_{0.5}S T=1000°C

Рисунок 4 Обр. 3269 Fe0.75Ni0.25S T=1550°C

В образцах из первых двух типов составы Mss и равновесного сульфидного расплава закономерно различаются. Отношение [Me/S] у моносульфидного твердого раствора обычно чуть меньше единицы, для расплава [Me/S] отношение всегда превышает 1. На основе этого разделения, а также результатов микрозондового анализа, был построен фрагмент схематической фазовой диаграммы. Образцы, полученные во второй серии экспериментов, не имея признаков плавления, не попадают в субсолидусную область, что может быть обусловлено погрешностями при калибровке температур.

Сульфиды с плотными массами изометричных кристаллов, не имеющие признаки плавления, а также различающиеся по исходным содержаниям компонентов, были отобраны для КР спектроскопии. По результатам съемки зависимости от состава в положении пиков выявлено не было.

Структурный анализ для опыта со стартовым составом Fe_{0.5}Ni_{0.5}S показал, что параметры решетки согласуются с литературными данными для конечных членов твердого раствора (табл.1).

Образец	Пр.группа	ф.е.	a=b (Å)	c(Å)	$V(Å^3)$
FeS [5]	P 6 ₃ /mmc	Z = 2	3.4380	5.8800	60.19
$Fe_{0.5}Ni_{0.5}S$	$P 6_3/mmc$	Z = 2	3.4352(18)	5.623(3)	
α-NiS [6]	P 6 ₃ /mmc	Z = 2	3.4375(7)	5.351(1)	54.69(2)

Таблица 1 Сводная таблица с данными структурного анализа

Для того, чтобы сопоставить экспериментальные данные с минералогическими данными включений в природных алмазах, использовалась треугольная диаграмма Fe-Ni-S (рис.5). На ней видно, что полученные расплавные фазы отличаются высоким содержанием никеля и общим увеличением доли металлов относительно серы, в то время как моносульфидные твердые растворы располагаются ближе к стороне Fe-S. Смещение экспериментальных составов в сторону высоких NiS-FeS отношений, не характерных для природных систем, объясняется тем, что в настоящей работе нами были изучены фазовые отношения во всем диапазоне составов системы Fe-Ni-S. На диаграмме прослеживается близость моносульфидных твердых растворов с обоими полями сульфидных включений в алмазах P и E типов. При этом аналогия с природными системами достигается лишь для стартовых составов с Ni/(Ni+Fe) до 0.75.

Рисунок 5 Треугольная диаграмма в координатах Fe-Ni-S (мас.%). Міх phases-фазы смешанного состава, (ex)- данные полученные экспериментально. (P) и (E) –области состава перидотивого и эклогитового парагенезиса [2,3,4].

Авторы выражают благодарность Корепанову В. И. за помощь при съемке КР спектров и их обработке.

Исследования выполнены по научному плану Лаборатории Глубинных Геосфер геологического факультета МГУ.

Литература:

- 1. Чепуров А.И. Роль сульфидных расплавов в формировании природных алмазов. Геология и геофизика, №. 8, 1988, стр. 119-124.
- 2. Гаранин В. К. Минералогия кимберлитов и родственных им пород алмазоносных провинций России в связи с их генезисом и поисками/ Автор. дисс.. док. геол.-мин. наук. М., 2006.
- Davies, R., Griffin, W.L., Pearson, N.J., Andrew, A., Doyle B.J., O'Reilly S.Y., 1999. Diamonds from the deep: PipeDO-27, Slave Craton, Canada. In: Proceedings of the seventh International Kimberlite Conference, Red Roof Design, CapeTown, pp. 148–155.
- 4. Deines P, Harris J.W. Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim Cosmochim Acta 59:3173-318, 1995.
- 5. Wyckoff, R. W. G. Cubic Closest Packed, CCP, Structure Crystal Structures 2nd edn, Vol. 1, 7–83, Interscience Publishers, 1963.
- 6. Sowa, H., Ahsbahs, H., Schmitz, W. X-ray diffraction studies of millerite NiS under non-ambient conditions. Physics and Chemistry of Minerals, 2004, 31: 321–327.