Vibration damping problems for some models of viscous fluids
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Abstract. This article deals with control problems for dynamical systems with non-local convolution type terms. A method is proposed to get conditions under which the moving system will go into complete rest. The force acting on the system is distributed over the entire moving domain. Domains of one, two and three dimensions are considered. For these three cases of dimension and two types of fluids (Oldroyd fluid and Kelvin-Voigt fluid), the initial conditions are formulated for the problem posed, with the help of which the proposed method can bring these systems to complete rest in a finite time. Sufficient conditions are given that must be satisfied by the initial oscillations of the systems, under which the spectral method we use can bring these initial oscillations to complete rest.  This is a condition on the smoothness of the initial functions and some additional boundary conditions for them. The article presents a new technique for damping unwanted vibrations in visco-elastic building materials.
1 Introduction 
The design and construction of high-rise buildings requires ensuring their safety under wind and seismic loads, as well as the ability to control the basic dynamics and characteristics of building structures. One way of solving these problems is the use of vibration control systems. With the help of such control systems, it is possible to limit unwanted deformations, displacements and stresses, and to control the dynamic characteristics. Controlling forces will resist external influences. This paper proposes an algorithm for damping vibrations in Oldroyd and Kelvin-Voigt fluids. Such visco-elastic compositions can be used as backfill materials for repair and insulation works in especially difficult conditions. These methods can also be used to damp vibrations of viscoelastic fragments of building structures, as well as fragments of machines and mechanisms using active elements (actuators). Such modern methods of stabilizing structures have now begun to find practical application. Another example is geosynthetic materials, which are finding ever new areas of application in construction; therefore, the question of the influence of their viscoelastic properties on dynamic effects is relevant.
This article presents a method for bringing viscoelastic mechanical systems to rest in a finite period of time. This method can also be used to bring to the rest vibrations of rods, plates, shells and other elastic bodies. Spectral theory is the basis of this method. As viscoelastic mechanical systems, the Oldroyd fluid and the Kelvin-Voigt fluid are considered for the cases of various domains differing in both dimension and shape.  

Many Russian and foreign works are devoted to the problems of control of mechanical systems with integral aftereffect. It is proved by controlling one end of the string one can stop the vibrations of the string in a finite time [1-3]. Control problems in the case when the behavior of the system is described by the Gurtin-Pipkin equation were considered in [4-6], it was found that it is possible to control such a system using a limited external force, which is distributed over the entire domain under consideration.  In [7], it was proved that this cannot be done in the case when the force is applied only to some part of the domain. Evolution equations with memory were studied in [8]. This work shows that although it is impossible to control the entire domain using a force on a part of it, but if a force is applied to a moving subdomain, then the control problem is solvable under certain conditions.  This paper discusses integro-differential models that are often used in the study of viscoelastic systems [9-10]. The correctness of models (1) - (2) was investigated in [11]. It can be shown that in these problems controllability takes place with the help of a force applied to the entire area (to a segment), and the absolute value of the force can be of little value.  It was shown in [12] that for a number of systems without an integral aftereffect, the motion can be completely stopped by a force limited in absolute value and applied to the entire region, under certain conditions on the initial data. In [13], for a mechanical system defined by a linear integro-differential equation with a non-local term of the convolution type, the possibility of damping oscillations in a finite period of time for any initial conditions was proved. In the works [14-16] it is proved that even with the tightening of the requirements for the control force, the controllability of the system is not lost, and on the whole the qualitative picture corresponds to [1]. The methods used in these works were developed in [17–19]. Dynamic problems for systems with integral time delay are presented in [20]. 
The spectral method is used in this article to solve the problem of damping fluid vibrations in two-dimensional and three-dimensional regions. 
2 Problem specification and decision
Consider the following vibration control problems for simplified Oldroyd and Kelvin-Voigt fluid models. The simplification consists in considering the scalar case and in the absence of pressure. The domain 
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 can be a one-dimensional interval, a square, a cube, a two-dimensional or three-dimensional bounded domain, that is, a total of five cases. The equations of fluid dynamics for the Oldroyd and Kelvin-Voigt models, the boundary and initial conditions have, respectively, the following form:
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The problem is to build a distributed control 
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. Function 
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. Thus, our problem is to stop fluid oscillations using control function 
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 in a finite time.
To construct this control function, we will apply the spectral method, which consists in finding  
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 in the form of a decomposition 
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where 
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 are time functions to be determined t, and 
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 is the system of eigenfunctions of the Dirichlet problem for the Laplace equation in the domain 
[image: image15.wmf]Q

. The search for a solution in this form will lead to the problem of stopping the oscillations of the counting system of pendulums, the specific form of which will be given below. To implement the spectral method, we need some estimates for the eigenfunctions and Fourier coefficients.
Let 
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 with a smooth boundary, that is, 
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We estimate the value 
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According to S. L. Sobolev's lemma [21] 
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 is the dimension of space. We consider the next values 
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based on the estimate for the solution of the elliptic boundary value problem 
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Now let 
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Let 
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 be an expansion of a function 
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According to well-known results [21] we have 
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Also it’s known behavior of the eigenvalues of elliptic boundary value problems in a bounded domain 
[image: image47.wmf]2

n

d

Kn

l×

:

, consequently,





[image: image48.wmf]2

n

d

cKn

£×

.







 (6)
The last estimate shows how the Fourier coefficients of the expansion of the function 
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Using the example of a circle-shaped domain 
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 on the plane (
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 eigenfunctions does indeed increase. In this case, the real growth rate of the modulus of eigenfunctions will be less than the estimate we have obtained.  Getting an accurate estimate for a circle is a separate problem related to the theory of Bessel functions, since for the eigenfunctions of  Laplace operator in a circle of radius 
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The following statement holds.
Statement 1.

Consider the next sequence of systems
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 Here
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[image: image73.wmf]n1n2n3n41234

,,,,,,,,,

AcnBcnacbcccccc

££g

::

 are some constants. Then there are a constant 
[image: image74.wmf]0

T

>

 independent of n and a control function 
[image: image75.wmf]n

()

gt

, such that 
[image: image76.wmf]n

()0

ut

º

  at 
[image: image77.wmf]tT

³

 and
[image: image78.wmf]n

()0

gt

º

   if 
[image: image79.wmf],1,2,

tTn

³=

K

.

Proof.

The general solution of (8) has the form
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where 
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We will look for a control function 
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where 
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For the two real roots of the characteristic equation, control function 
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where 
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 are two negative real roots of the characteristic equation. In this case, it is also easy to show that 
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 is some constant.  Hence it can be seen that for a sufficiently large T there will be 
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Let us reduce systems (1), (2) to systems for oscillators. To do this, we differentiate equation (1) with respect to t and add it to (1). For the Oldroyd fluid model, we obtain a system that does not contain integral terms:
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here 
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Let us now differentiate equation (2) and add it with (2). For the Kelvin-Voigt fluid model, we also obtain a system without integral terms:
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The second of the initial conditions in (13) can be easily obtained from (2) if we assume 
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Our task is to bring to rest the oscillations of systems (12) - (13) using the control function 
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 for systems (1), (2) with nonlocal terms of the convolution type, which bring the oscillations of these systems to complete rest in a finite time.  For this, it suffices to use the equality: 
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Let us apply the method of expansion in a Fourier series to reduce the problems posed to the problems of controlling a countable number of the simplest oscillatory systems. 

For the Oldroyd fluid model, the indicated system of oscillators will take the form:
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where 
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It was previously found that 
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.  Using Statement 1, it is easy to prove that in the case of the Oldroyd fluid model it is sufficient to require the existence of second derivatives, and no additional conditions are required on the boundary of the domain Q. 
For the Kelvin-Voigt fluid model, the corresponding system of oscillators is:  
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The difference between the system of oscillators corresponding to the Kelvin-Voigt model is that as the oscillator number tends to infinity, the oscillation frequency and damping decrement tend to finite values, while for Oldroyd's fluid they increase indefinitely. The proof of an analogue of Statement 1 for this case and further simple estimates show that in this case, too, the condition 
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  is sufficient for reducing the entire countable system of oscillators in a finite time at rest by means of a control 
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3 Conclusions 
In both cases, for the Oldroyd and Kelvin-Voight fluid models, it is possible to bring the oscillations to a state of complete rest in a finite time using a force distributed over the entire region of a limited absolute value. However, the Kelvin-Voight model requires additional conditions on the smoothness of the initial function, as well as additional boundary conditions for it. Of course, these conditions are only sufficient, we do not present any necessary conditions in this work. In our opinion, controllability for the subdomain is impossible here. An interesting question is whether it is possible to damp fluid oscillations when a control force is applied to a moving subdomain. Similar methods of distributed control can be easily transferred to the model of a viscoelastic deformable rigid body. Recently, such methods are finding increasing practical application for stabilizing the elements of machines and mechanisms, as well as visco-elastic fragments of building structures.  
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