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Abstract. The problem of classification under concept drift conditions is investigated. The 

importance of anomaly detection is emphasized as a key feature of successful approach to 

operate with adversarial attacks and data poisoning. An approach to classification in the context 

of both drift and anomalies is introduced. It is based on ensemble of one-class classifiers, 

implemented by neural network autoencoders. Numeric parameters and supplementary logic are 

also supposed to distinguish between different classification cases. The quality of classifiers is 

estimated by original characteristics (EDCA), which examine both training set area and the area 

around it. The proposed approach is evaluated on synthetic data to highlight its properties in 

various conditions including normal, drift, new class and anomaly cases. 

1.  Introduction 

Well-known classical machine learning methods such as support vector machine (SVM), decision trees, 

artificial neural networks demonstrate high classification quality. As a rule, classification is carried out 

under the assumption of stationary conditions, when the training data set fully describes the 

classification problem after the training sample has been obtained. However, this assumption is not 

always true. In non-stationary conditions, the training set may lose relevance if the objects of 

classification have changed. It is called concept drift. 

Classification quality is usually measured by characteristics based on a confusion matrix. These 

usually include accuracy, precision, recall, and F1-score. However, these characteristics do not allow us 

to assess the quality of classification in the context of concept drift. Examples of adversarial attacks on 

neural network classifiers have also become widely known, in which examples are purposefully formed 

outside the scope of the training set, but are perceived by classifiers as correct. The problems of 

recognizing the drift of concepts and reducing the risk of adversarial attack are interrelated, since they 

require determining the behavior of the classifier outside the training set. 

It seems important to develop an approach to constructing a classifier that allows, on the one hand, 

to track the concept drift, and on the other hand, to detect adversarial attacks.  

Section 2 of the article provides a review of sources on issues related to classification in a drift 

conditions. Section 3 proposes a method for detecting drift, new classes and anomalies using 

autoencoders, as well as a method for assessing the vulnerability of trained models. Section 4 

demonstrates the results obtained when testing the proposed approach on synthetic data. Section 5 
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contains discussion of the contribution. Section 6 concludes the article and indicates possible directions 

for future research. 

2.  Background 

Non-stationary conditions are characterized by the problem of data drift. Data drift means that the 

underlying data distribution changes over time [1]. As a result, the input data has changed in general 

and the trained model is not relevant for this new data. There are different types of drift. It can be gradual, 

sudden, and recurring (seasonal). Gradual drift means that the probability of the old data distribution 

will decrease, and the probability of a new distribution will increase during a period of time until the 

new distribution substitutes the old one. Any drift causes static model decay. 

The drift problem may occur in various real-world applications, for example: 

 in face recognition systems, 

 in text classification systems, spam, 

 when identifying a user by behaviour, 

 computer systems or networks when classifying network intrusions, 

 in industry when classifying the state of a plant and many others. 

In recent years machine learning researchers are faced with the problem of data drift when mining 

and classifying non-stationary data streams. This has led to the development of tailored approaches that 

extend the capabilities of traditional machine learning methods. Most often, the current accuracy of the 

model is monitored to detect drift of any type. If it decreases, then it means that the model becomes 

invalid and needs to be modified [2], [3], [4]. It is also possible to monitor changes in the statistical 

properties of the data itself [5], [6]. An autoencoder is a promising tool for detecting different types of 

drift [7]. Typically, after a drift is detected, the classifier is retrained on the current data on the 

assumption that it better describes the actual distribution of the data. 

Sometimes the drift detection mechanism is included in the data stream classification algorithm itself. 

There are three main groups of such approach: incremental learning based approaches [8], [9], window-

based approaches [10], and ensemble-based approaches [11], [12], [13]. 

The most popular evolving technique for handling concept drift in data streams is to use an ensemble 

classifier (a combination of classifiers), such as in [12]. The outputs of multiple classifiers are combined 

to determine the final classification, which is often called fusion rules. 

The problem of poisoning the training data with anomalies can be solved by a classifier with 

adaptation to new data [11] [14] [15]. 

Some of the approaches mentioned above solve the problem of detecting the concept drift, and some 

- detecting anomalies due to adversarial attacks [16], but none of the approaches allows detecting both 

situations within the framework of a unified approach. In addition, some of the considered approaches 

are not protected from training on data contaminated with (poisoning) anomalies, which allows an 

attacker to form a classifier for his own purposes. To control the concept drift and anomalous data, an 

approach based on an ensemble of autoencoders seems promising. 

3.  Dynamic classification approach using scalable ensemble of autoencoders 

3.1.  Detection of drift, new classes and anomalies using an autoencoder  

The proposed method is based on an algorithm for detecting novelty in data using a neural network 

autoencoder [17], [7]. The training of the autoencoder continues until it reconstructs samples of the 

training set with acceptable accuracy. The output of the autoencoder is called reconstruction. 

The trained autoencoder can be used to measure the closeness of the input samples to the training 

data. The autoencoder is often used as a one-class classifier. The degree of closeness of the input sample 

to the training data is determined by the value of immediate reconstruction error (IRE). The IRE value 

for the input sample 𝑋(𝑥1, 𝑥2, … , 𝑥, … 𝑥𝑚) of dimension 𝑚 is calculated by the formula: 𝐼𝑅𝐸𝑋 =

√∑ (𝑥𝑖 − 𝑦𝑖)2𝑚
𝑖=1 , where 𝑌(𝑦1, 𝑦2, … , 𝑦, … 𝑦𝑚) is the reconstruction of the input sample. The closer 𝐼𝑅𝐸𝑋 

is to zero, the more accurately the autoencoder has reconstructed the input sample and the more reliable 



 

 

 

 

 

 

the hypothesis that the input sample belongs to the training set. To detect novelty in the data, the 

threshold value 𝐼𝑅𝐸𝑡ℎ is determined. The threshold value in this paper is chosen as the maximum value 

among the reconstruction errors calculated for the samples of the training set. 

The threshold value of the reconstruction error can be interpreted as a class boundary in the feature 

space. Thus, if the 𝐼𝑅𝐸𝑋 for a sample 𝑋 exceeds the recognition threshold 𝐼𝑅𝐸𝑡ℎ, it means that the 

sample is outside the class boundary.  

In the real world, it is important to distinguish between two cases: the outlier sample is near the class 

boundary or it is far from it. Let’s consider the IRE as a metric of the closeness of a sample 𝑋 to the 

class boundary, defined by 𝐼𝑅𝐸𝑋 ≤ 𝐼𝑅𝐸𝑡ℎ. An appearance of new samples outside, but nearby the class 

boundary over time may indicate a gradual drift of the class. In this case, it makes sense to retrain the 

autoencoder with the inclusion of newly received samples in the training set. The appearance of a new 

sample 𝑋 at a significant distance from the boundary (𝐼𝑅𝐸𝑋 ≫ 𝐼𝑅𝐸𝑡ℎ) may indicate the appearance of a 

new class or an anomaly. Both cases do not need retraining of this classifier. 

To distinguish concept drift from other cases, a coefficient of proportional expansion of the boundary 

𝑘𝑑𝑟𝑖𝑓𝑡 > 1 is introduced.  

The application of the introduced logic is formally described in table 1 and illustrated in figure 1. 

However, the shape of outer boundary of drift area may be more complex than a simple expansion of 

the class boundary in feature space. 

 

 

Figure 1. Cases of classification using a single autoencoder. 

 

Table 1. Cases of classification using a single autoencoder. 

Case Conditions Classification result Reaction method 

1 𝐼𝑅𝐸𝑋1 ≤ 𝐼𝑅𝐸𝑡ℎ Sample of a known class Nothing extra 

2 𝐼𝑅𝐸𝑡ℎ < 𝐼𝑅𝐸𝑋2 ≤ 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ Sample of a known class with a drift Retraining on new data 

3 𝐼𝑅𝐸𝑋3 > 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ Sample of a new class or an anomaly Extra processing 

 

In the case of a one-class classification, it is possible to determine whether a sample is an anomaly if 

its 𝐼𝑅𝐸 is above some boundary, which can be defined as 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ. Thus, if 𝐼𝑅𝐸𝑋3 > 𝑘𝑎𝑛𝑜𝑚  ∙
𝐼𝑅𝐸𝑡ℎ, then this sample can be classified as an anomaly.  

One can consider 𝑘𝑑𝑟𝑖𝑓𝑡 = 𝑘𝑎𝑛𝑜𝑚 to detect anomaly as a boundary of acceptable drift. However 

sometimes one needs to distinguish a new class case from the significant anomaly. The gap between 

anomaly and drift detection can be applied as a new class condition if 𝑘𝑑𝑟𝑖𝑓𝑡 < 𝑘𝑎𝑛𝑜𝑚: 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ <

𝐼𝑅𝐸𝑋3 ≤ 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ. 

The case of a new class detection should be processed as a new classifier introduction, which needs 

data gathering for its training. The case of an anomaly needs reporting only and does not affect 

classifiers. 

3.2.  Data classification under non-stationary conditions using an ensemble of autoencoders.  

The proposed method of using an autoencoder to operate with one class can be extended to the case of 

multiple classes. To solve the problem of multiclass classification with the drift capability, new data and 

anomaly detection, an ensemble of autoencoders can be used. Let’s assume the training set consists of 

samples of 𝑛 known classes 𝐶1, 𝐶2, … , 𝐶𝑛. It is proposed to build an ensemble of 𝑛 autoencoders 

𝐴𝐸1, 𝐴𝐸2, … , 𝐴𝐸𝑛. They should be trained to recognize samples of one of the known classes 



 

 

 

 

 

 

𝐶1, 𝐶2, … , 𝐶𝑛, as shown in Section 3.1. Also one more autoencoder 𝐴𝐸0 is introduced. It should be trained 

on all samples of training sets of all classes: 𝐶0 = 𝐶1⋃𝐶2 ⋃ … ⋃𝐶𝑛. For trained autoencoders, the 

threshold values 𝐼𝑅𝐸𝑡ℎ𝑗
 (𝑗 = 0,1, … , 𝑛) can be determined just the same way as for one class in Section 

3.1. 

The threshold values of the reconstruction error determined in this way for each autoencoder make 

it possible to outline 𝑛 areas of known classes 𝐶1, 𝐶2, . . . , 𝐶𝑛 in the feature space. As well as the area 𝐶0 

overlying all known classes (figure 2). If the autoencoder 𝐴𝐸0 is trained qualitatively, then we can expect 

that the 𝐶0 area will cover the known classes quite densely. 

Exactly the same 𝑘𝑑𝑟𝑖𝑓𝑡 coefficient can be defined to detect concept drift for every class by using 

corresponding autoencoder 𝐼𝑅𝐸𝑡ℎ𝑗
, where 𝑗 =  1,2, . . . , 𝑛. Figure 2 gives several different cases of 

sample location in the feature space. For example, points 2a and 2b represent concept drift for 𝐶1. In 

case of drift detection one needs to retrain affected autoencoders. 

Several autoencoders may accept the same sample as their own belonging. A class with 𝐴𝐸𝑗 which 

gives minimum of the ratio 𝐼𝑅𝐸𝑋𝑗
/𝐼𝑅𝐸𝑡ℎ𝑗

 is defined as a matching one. The same rule can be applied 

for drift detection by several autoencoders: the class for which the concept drift is solved to be detected 

marks the minimum excess over 𝐼𝑅𝐸𝑡ℎ𝑗
among all. 

In the cases discussed earlier, it was assumed that the known classes could be expanded. It is also 

worth considering the case when a gradual, recurring or sharp class drift is detected. Then, over time, 

some of the data on which the autoencoder was initially trained will become irrelevant for this class. 

Such data should be forgotten. A full retraining of the autoencoder is possible when the necessary 

amount of relevant training data is collected. 

Now let us consider the case when the previous steps of the classification algorithm define that a new 

sample does not belong to known classes. Then the threshold criterion 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0 is used to 

distinguish the cases of the appearance of a new class or anomaly. If the IRE for the new sample does 

not exceed 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0, then this sample is classified as a sample of new class (case ‘3’ in figure 2). 

In this case, a new autoencoder 𝐴𝐸𝑛+1 should be created and trained. As well as retrain 𝐴𝐸0 taking into 

account the samples of the new class. If the 𝐼𝑅𝐸 for a new sample exceeds 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0, then this 

sample is classified as an anomaly (case ‘4’ in figure 2). If an anomaly is detected, it is recommended 

to generate an alerting signal. For many subject areas, it is critically important. Various possible cases 

are formally described using the conditions in table 2 and illustrated in figure 2. 

 

 
 

Figure 2. Cases of classification using an ensemble of autoencoders. 

 



 

 

 

 

 

 

Table 2. Cases of classification using an ensemble of autoencoders. 

Case Conditions Classification result Reaction method 

1 𝐼𝑅𝐸𝑋1 ≤ 𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) 

Sample of a known class 

with the least ratio 

𝐼𝑅𝐸𝑋1/𝐼𝑅𝐸𝑡ℎ𝑗
 

Nothing extra 

2a 
𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) < 𝐼𝑅𝐸𝑋2a ≤ 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) 

𝑎𝑛𝑑   𝐼𝑅𝐸𝑋2a ≤ 𝐼𝑅𝐸𝑡ℎ0 

Sample of a known class 

with drift 

Retraining 

𝐴𝐸(1|2|…𝑛) on new 

data 

2b 
𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) < 𝐼𝑅𝐸𝑋2b ≤ 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) 

𝑎𝑛𝑑   𝐼𝑅𝐸𝑡ℎ0 <  𝐼𝑅𝐸𝑋2b ≤  𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0 

Sample of a known class 

with drift 

Retraining 

𝐴𝐸(1|2|…𝑛) and 𝐴𝐸0 

on new data 

3 
𝐼𝑅𝐸𝑋3 > 𝑘𝑑𝑟𝑖𝑓𝑡𝐼𝑅𝐸𝑡ℎ(1|2|…𝑛) 

𝑎𝑛𝑑   𝐼𝑅𝐸𝑡ℎ0 <  𝐼𝑅𝐸𝑋3 ≤  𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0 
Sample of new class 

Creating and 

training 𝐴𝐸𝑛+1, 

retraining 𝐴𝐸0 on 

new data 

4 𝐼𝑅𝐸𝑋4 > 𝑘𝑎𝑛𝑜𝑚𝐼𝑅𝐸𝑡ℎ0 Anomaly Extra processing 

 

In general, the contribution of this paper is a simple and effective method for classification and 

anomaly detection data with drift. Further, the classifier based on the proposed approach is called 

scalable ensemble of autoencoders (SEAEs). 

The approach also includes an evaluation of the accuracy of the approximation of the training data 

areas by the model using new characteristics. The method of evaluating the vulnerability of a trained 

model to adversarial attacks is described in the next section. 

3.3.  Assessing adversarial vulnerability using new characteristics.  

To enhance the proposed approach against adversarial attacks the approximation accuracy of the training 

data area should be estimated. The trained classifier approximates the training data area in the feature 

space. If the approximated area completely matches the training data area, then the model is not 

vulnerable to adversarial attacks (figure 3b). Otherwise (figure 3a), there is an adversarial example that 

can cheat the classifier. 

An original approach to estimate approximation accuracy of the training data area was proposed in 

research paper [18], where four new characteristics were introduced: Excess, Deficit, Coating, Approx 

(EDCA). They are calculated from two discrete estimates in feature space. The first estimate is a discrete 

volume that the training data occupies in feature space |𝑋𝑇
∗ |. The second is an estimate of the volume in 

the feature space where data are recognized by the classifier. Since this volume differs from training set 

volume, it can be called a deformed set volume |𝑋𝐷
∗ |. To determine the data under each class, the feature 

space is scanned with some regular step. The scanned discrete points are classified using the trained 

model to evaluate its belonging to the area of classification. The area of points with an exact 

classification result forms a discrete volume under the resulting class. For a multi-class classifier one 

needs to calculate the mentioned discrete volume estimates for each class. 

To estimate the data volume, the feature space is divided into atomic cells. The cell of 𝑋𝑇
∗  is not 

empty if it contains at least one point from training set. The cell of 𝑋𝐷
∗  is not empty if at least one point 

matches the class from the classifier point of view. 

New characteristics are calculated on the basis of discrete estimates of training |𝑋𝑇
∗| and deformed 

|𝑋𝐷
∗ | set volumes using the following formulas: 

𝐸𝑥𝑐𝑒𝑠𝑠 =
|𝑋𝐷

∗ \𝑋𝑇
∗ |

|𝑋𝑇
∗|

𝐷𝑒𝑓𝑖𝑐𝑖𝑡 =
|𝑋𝑇

∗\𝑋𝐷
∗ |

|𝑋𝑇
∗ |

𝐶𝑜𝑎𝑡𝑖𝑛𝑔 =
|𝑋𝑇

∗ ∩ 𝑋𝐷
∗ |

|𝑋𝑇
∗ |

𝐴𝑝𝑝𝑟𝑜𝑥 =
|𝑋𝑇

∗ |

|𝑋𝐷
∗ |

 

An ideal one-class classifier model should have the following characteristics: 

𝐸𝑥𝑐𝑒𝑠𝑠 = 0, 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 0, 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 = 1, 𝐴𝑝𝑝𝑟𝑜𝑥 = 1 



 

 

 

 

 

 

The proposed criterion can be easily generalized to any number of classes. In such case every 

characteristic should be defined for its own class separately.  

In the traditional approach, the quality of the classifier is evaluated by the classification results of the 

test set. Moreover, the quality assessment of the classifier is based only on the aggregate characteristics 

for the classifier as a whole (accuracy, precision, recall, F1-score). Let’s evaluate the quality of the 

classifier by EDCA criterion. To apply the method it is enough to have only a training set and to know 

the reasonable limits of all dimension of features. 

Let us demonstrate new characteristics effectiveness by an example. Consider two one-class 

classifiers AE1 and AE2. The first autoencoder AE1 has the architecture [2; 1; 2], and the second 

autoencoder AE2 has the architecture [2; 3; 5; 2; 1; 2; 5; 3; 2]. Autoencoders AE1 and AE2 are trained 

on the same synthetic dataset for 1000 epochs. Figure 3 shows the areas of points in the feature space 

that trained autoencoders assigned to the target class. 

 

 
(a)                                                                 (b) 

Figure. 3. Class boundaries constructed by autoencoders AE1 (a) and AE2 (b) 

 

Figure 3a shows that the first autoencoder AE1 built several target areas, while the training data is in 

only one of them. Such an autoencoder is vulnerable to adversarial attacks. The AE2 autoencoder 

architecture is more complex, so it approximates the training data area more accurately. To demonstrate 

the consistency of the criterion, table 3 shows the values of the proposed characteristics for the first and 

second autoencoders.  

 

Table 3. Results of assessing the vulnerability of trained models 

Classifier Excess Deficit Coating Approx 

AE1 11.25 0  1 0.08 

AE2 0.5 0  1 0.67 

Ideal AE 0 0 1 1 

 

The values for the autoencoder AE2 are closer to ideal. That means it is less vulnerable to adversarial 

attacks, as shown in figure 3b. Thus, the new characteristics allow to assess the actual resistance of the 

trained model to an adversarial attack. The proposed characteristics are especially important in the case 

of high data dimensions. The high dimensionality of the feature space makes it impossible to accurately 

visualize the area that the classifier also assigns to the target class, as in figure 3. Thus, testing of the 

trained models using EDCA characteristics makes it possible to build more reliable classifiers. 

4.  Experimental results  

In this section, we present results of SEAEs testing conducted on simple synthetic datasets with drift, 

anomalies and new class data in test sets. 

The training data contains only two data classes. The dimension of the training data is D=400. The 

two test sets T1 and T2 are constructed in such a way, that the concept drift occurs after 400 data samples 

processing. The test dataset T1 additionally includes samples of new class. And test dataset T2 



 

 

 

 

 

 

additionally includes anomaly samples. In the experiments, we used a 7-layered autoencoder for each 

class. The dimensions of the input and output layers match the dimensionality of the data. The dimension 

of the middle layer is set to 4. The AE0 autoencoder has the same architecture. The ADAM learning 

algorithm is used for training. The learning rate is set to η=0.01. To implement the SEAEs classifier, 

parameters 𝑘𝑑𝑟𝑖𝑓𝑡 and 𝑘𝑎𝑛𝑜𝑚 are set to 1500 and 10000, respectively. 

In the first experiment, the ensemble of autoencoders is trained only for the first 400 data elements. 

To assess the vulnerability of the trained SEAEs, the values of new characteristics (EDCA) were 

calculated for each autoencoder. The values of the new characteristics are calculated using formulas (1-

4) given in Section 3.3. The results of the vulnerability assessment of the trained models are shown in 

Table 4. 

 

Table 4. Results of vulnerability assessment of trained models 

SEAEs Excess Deficit Coating Approx 

AE1 0.47 0  1 0.68 

AE2 0.77 0  1 0.57 

AE0 0.94 0  1 0.52 

 

The obtained values make sure that the feature space does not contain large areas that may include 

adversarial examples. After a successful check, the SEAEs switches to the monitoring mode. The 

classification was carried out in accordance with the rules shown in table 2. Examples of the training 

set, as well as the class boundaries constructed by the autoencoders in the feature space, are shown in 

figure 4a. The result of the classification of test set T1 using a SEAEs is shown in figure 4b. 

 

 
(a)                                               (b) 

Figure 4. Result of test set T1 classification using SEAEs 

 

The SEAEs classified with high accuracy the drifting data of the class 2 and the data of the new class 

(cl.3). This is also confirmed by the traditional characteristics of classification quality (table 5). 

 

Table 5. The SEAEs assessment results by traditional characteristics 

Classifier Precision Recall F-score 

SEAEs 1 0.99 0.99 

 

The classifier was retrained on data without anomalies when enough examples were collected. The 

ensemble classifier pool was expanded to accommodate the new class. For class 3, a new autoencoder 

of the same architecture was created. The training sample for retraining consisted of up-to-date data. 

After retraining, the stability of the classifier was also assessed using new characteristics (EDCA). The 

results of the model evaluation after retraining are presented in table 6. 

 

 



 

 

 

 

 

 

Table 6. Results of vulnerability assessment of trained models (after retraining) 

Re-trained SEAEs Excess Deficit Coating Approx 

AE1 0.76 0  1 0.57 

AE2 1.06 0  1 0.49 

AE3 0.47 0  1 0.68 

AE0 1.15 0  1 0.46 

 

The characteristic values show that the class boundaries built by autoencoders have become wider. 

This is because the training data for retraining is more varied. This is confirmed by figure 5a. 

Figure 5b shows the classification results for the T2 test set, which includes data drift and anomalies. 

 
(a)                                               (b) 

Figure 5. Result of test set T2 classification using SEAEs 

 

A timely retrained classifier successfully classified drift data and anomalies. This is confirmed by 

the values of traditional classification quality characteristics, which are shown in table 7. 

 

Table 7. The SEAEs assessment results by traditional characteristics 

Classifier Precision Recall F-score 

Re-trained SEAEs 1 0.99 0.99 

 

The obtained experimental results confirm the effectiveness of the proposed dynamic classification 

approach using SEAEs. 

5.  Discussion 

The dynamic classification approach provides next advantages: 

 universality: normal, concept drift, new class and anomaly cases are handled; 

 economy of resources: it is not necessary to retrain all ensemble classifiers, if a drift of one class 

is detected; 

 low risk of data poisoning: filtering gathered data on anomalies. 

However, a lot of resources are needed to train one-class classifiers for a large number of classes. 

6.  Conclusions  

In this article, we focus on the dynamic classification of data streams under non-stationary conditions. 

We propose a new approach based on a scalable ensemble of autoencoders. The approach allows for the 

emergence of new classes, drift, anomalies and adversarial attacks in classification. The results of 

experiments on synthetic data show the effectiveness of the proposed approach. In future work, we plan 

to test the proposed algorithm on real high-dimensional data streams. 
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