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Nonintegrability of the Problem of the Motion
of an Ellipsoidal Body with a Fixed Point

in a Flow of Particles
M. M. Gadzhiev, A. S. Kuleshov

The problem of the motion, in the free molecular flow of particles, of a rigid body with a fixed
point bounded by the surface of an ellipsoid of revolution is considered. This problem is similar
in many aspects to the classical problem of the motion of a heavy rigid body about a fixed point.
In particular, this problem possesses the integrable cases corresponding to the classical Euler –
Poinsot, Lagrange and Hess cases of integrability of the equations of motion of a heavy rigid body
with a fixed point. A natural question arises about the existence of analogues of other integrable
cases that exist in the problem of motion of a heavy rigid body with a fixed point (Kovalevskaya
case, Goryachev –Chaplygin case, etc) for the system considered. Using the standard Euler
angles as generalized coordinates, the Hamiltonian function of the system is derived. Equations
of motion of the body in the flow of particles are presented in Hamiltonian form. Using the
theorem on the Liouville-type nonintegrability of Hamiltonian systems near elliptic equilibrium
positions, which has been proved by V.V.Kozlov, necessary conditions for the existence in the
problem under consideration of an additional analytic first integral independent of the energy
integral are presented. We have proved that the necessary conditions obtained are not fulfilled
for a rigid body with a mass distribution corresponding to the classical Kovalevskaya integrable
case in the problem of the motion of a heavy rigid body with a fixed point. Thus, we can conclude
that this system does not possess an integrable case similar to the Kovalevskaya integrable case
in the problem of the motion of a heavy rigid body with a fixed point.
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1. Introduction. V. V.Kozlov’s theorem on the nonexistence
of an analytic first integral near the equilibrium position
of a Hamiltonian system

In 1976 V.V.Kozlov in his paper [1] (see also [2, 3]) proved a theorem which gives sufficient
conditions of the nonexistence, for the Hamiltonian system, of a first integral analytic in canonical
variables and independent of the Hamiltonian function H. Below we give a statement of the
problem using the notations from [1] and a formulation of the corresponding theorem.

Let us consider the system of canonical equations

dxi
dt

=
∂H

∂yi
,

dyi
dt

= −∂H
∂xi

, i = 1, . . . , n, n � 2 (1.1)

with the Hamiltonian function H(y1, . . . , yn, x1, . . . , xn, ε) depending analytically on the vari-
ables y = (y1, . . . , yn), x = (x1, . . . , xn) and on the parameter ε, which takes values in some
connected domain D ∈ R

r. Suppose that for all ε the point yi = 0, xi = 0 (i = 1, . . . , n) is an
equilibrium position of the system (1.1). In the vicinity of an equilibrium position yi = 0, xi = 0
(i = 1, . . . , n) the Hamiltonian function H can be represented as follows:

H = H(2) +H(3) + · · · ,

where H(s) is a homogeneous form of degree s in y = (y1, . . . , yn) and x = (x1, . . . , xn). The
coefficients of this expansion are analytic functions of the parameter ε. Let us assume that
for all ε ∈ D the frequencies of linear oscillations ω(ε) = (ω1(ε), . . . , ωn(ε)) do not satisfy any
resonant relation

(m · ω) = m1ω1 + · · ·+mnωn = 0

of order |m1|+· · ·+|mn| � m−1. Using Birkhoff’s normalization method (see, for example, [4, 5]),
we can find a canonical transformation (y, x) → (p, q) such that in the new variables

H(2) =
1

2

n
∑

i=1

ωiρi, H(k) = H(k)(ρ1, . . . , ρn, ε), k � m− 1,

where ρi = p2i + q2i . The corresponding transformation is analytic in ε. Now we introduce the
canonical action–angle variables (I, ϕ) by the formulas

Ii =
ρi
2
, ϕi = arctan

pi
qi

(1 � i � n).

In the canonical variables (I, ϕ) we have

H = H(2)(I, ε) + · · · +H(m−1)(I, ε) +H(m)(I, ϕ, ε) + · · ·

We represent the trigonometric polynomial H(m) as a finite Fourier series

H(m) =
∑

h
(m)
k (I, ε) exp(i(k ·ϕ)).

Theorem 1 (V. V.Kozlov [1–3]). Let (k ·ω(ε)) �≡ 0 for all k ∈ Z
n \ 0. Suppose that for

some ε0 ∈ D the resonant relation (k0 · ω(ε0)) = 0, |k0| = m is satisfied and h(m)
k0

�≡ 0. Then
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the canonical equations (1.1) with Hamiltonian function H =
∑

H(s) do not have a complete
set of (formal) integrals Fj =

∑

F
(s)
j , whose quadratic terms F (2)

j (y, x, ε) are independent for
all ε ∈ D.

Remark 1. Note that under the assumptions of V. V. Kozlov’s Theorem 1 there may exist inde-
pendent integrals with dependent (for certain values of ε) quadratic parts of their Maclaurin expansions.
Here is a simple example: the canonical equations with the Hamiltonian function

H =
1

2

(

x21 + y21
)

+
α

2

(

x22 + y22
)

+ 2x1y1y2 − x2y
2
1 + x21x2

have a first integral
F = x21 + y21 + 2

(

x22 + y22
)

.

For α = 2, it is dependent on the quadratic form H(2). However, all conditions of Theorem 1 are
satisfied.

The advantage of V.V.Kozlov’s Theorem 1 consists in the absence of preliminary restrictive
assumptions regarding the parameters of the system. This advantage substantially compensates
for the fact that the additional integral must belong to the class of analytic functions whose
quadratic parts is functionally independent of the quadratic part of the Hamiltonian function.

V.V.Kozlov’s Theorem 1 was successfully applied to prove the nonexistence of an additional
first integral in the plane circular restricted three-body problem [1–3], to study the integrability of
the problem of motion about a fixed point of a dynamically symmetric rigid body with the center
of mass lying in the equatorial plane of the ellipsoid of inertia [1, 3, 6], to prove the nonexistence
of an additional integral in the problem of the motion of a heavy double plane pendulum [6–8],
to obtain necessary conditions for the existence of an additional first integral in the problem of
the motion of a dynamically symmetric ellipsoid on a smooth horizontal plane [9], and to study
nonintegrability of the Kirchhoff equations of motion of a rigid body in a fluid [10, 11].

In this paper V V.Kozlov’s Theorem 1 is used to derive necessary conditions for the existence
of an additional analytic integral in the problem of motion in the flow of particles of a rigid body
with a fixed point bounded by the surface of an ellipsoid of revolution.

2. Formulation of the problem. Hamiltonian function
of the problem

Equations of motion of a rigid body with a fixed point, bounded by the surface of an ellipsoid
and exposed to the flow of particles, have the form [12, 13]

A1ω̇1 + (A3 −A2)ω2ω3 = ρv20πa1a2a3

√

γ21
a21

+
γ22
a22

+
γ23
a23

(h2γ3 − h3γ2),

A2ω̇2 + (A1 −A3)ω1ω3 = ρv20πa1a2a3

√

γ21
a21

+
γ22
a22

+
γ23
a23

(h3γ1 − h1γ3),

A3ω̇3 + (A2 −A1)ω1ω2 = ρv20πa1a2a3

√

γ21
a21

+
γ22
a22

+
γ23
a23

(h1γ2 − h2γ1);

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(2.1)

Here A1, A2 and A3 are the moments of inertia of the body about the principal axes of
inertia Ox1x2x3 with origin at the fixed point O, ω = (ω1, ω2, ω3) is the angular velocity vector
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of the body, γ = (γ1, γ2, γ3) is the unit vector directed along the flow of particles, ρ is the
constant density of the flow of particles, v0 is the constant velocity of particles in the flow,
a1, a2 and a3 are the lengths of the semiaxes of the ellipsoid bounding the rigid body, and h =
= (h1, h2, h3) is the vector directed from a fixed point to the center of the ellipsoid bounding
the rigid body.

For any parameter values, Eqs. (2.1) possess the first integrals

J1 = A1ω1γ1 +A2ω2γ2 +A3ω3γ3 = c1 = const, J2 = γ21 + γ22 + γ23 = 1. (2.2)

Let us assume that the center of the ellipsoid lies on the first principal axis of inertia Ox1
with origin at the fixed point O, at a distance l from the fixed point. In other words, in Eqs. (2.1)
we put

h1 = l, h2 = 0, h3 = 0.

We also assume that the ellipsoid bounding the rigid body is an ellipsoid of revolution with
the axis of symmetry passing through the fixed point O. Therefore, in Eqs. (2.1) we put

a1 = b, a2 = a3 = a.

In addition, we assume that the body is dynamically symmetric and that the axis of dynam-
ical symmetry of the body does not coincide with the axis of symmetry of the ellipsoid bounding
the body. In other words, we assume that

A1 = A2 = A, A3 = C.

Then the equations of motion in the flow of particles of a rigid body with a fixed point
bounded by the surface of an ellipsoid of revolution will be rewritten as follows:

Aω̇1 + (C −A)ω2ω3 = 0,

Aω̇2 + (A−C)ω1ω3 = −ρv20πa2bl
√

1− γ21
a2

+
γ21
b2
γ3,

Cω̇3 = ρv20πa
2bl

√

1− γ21
a2

+
γ21
b2
γ2;

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(2.3)

In addition to the first integrals (2.2), Eqs. (2.3) have a first integral of energy integral type

H =
A

2

(

ω2
1 + ω2

2

)

+
C

2
ω2
3 −G(γ1) = h = const.

The function G(γ1) is written differently depending on whether the ellipsoid bounding the
rigid body is prolate (b > a) or oblate (a > b). For a prolate ellipsoid of revolution (b > a), the
function G(γ1) has the form

G(γ1) =
ρv20πa

2bl

2
γ1

√

1− γ21
a2

+
γ21
b2

+
ρv20πbl

2
√

1
a2

− 1
b2

arctan

⎛

⎝

√

1
a2 − 1

b2 γ1
√

1−γ21
a2

+
γ21
b2

⎞

⎠.

For an oblate ellipsoid of revolution (a > b), the function G(γ1) has the form

G(γ1) =
ρv20πa

2bl

2
γ1

√

1− γ21
a2

+
γ21
b2

+
ρv20πbl

2
√

1
b2

− 1
a2

ln

(

a

√

1

b2
− 1

a2
γ1 + a

√

1− γ21
a2

+
γ21
b2

)

.
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Further, we will consider the case of a prolate ellipsoid of revolution (the case of an oblate
ellipsoid of revolution is considered in a similar way and gives the same result). As generalized
coordinates in this problem we introduce the standard Euler angles θ, ψ and ϕ. Then we have

γ1 = sin θ sinϕ, γ2 = sin θ cosϕ, γ3 = cos θ

and the Hamiltonian function of the problem in standard notation has the form

H =
1

2

(

p2θ
A

+
p2ϕ
C

+
(pψ − pϕ cos θ)

2

A sin2 θ

)

−ρv
2
0πa

2bl

2
sin θ sinϕ

√

1− sin2 θ sin2 ϕ

a2
+

sin2 θ sin2 ϕ

b2
−

− ρv20πbl

2
√

1
a2

− 1
b2

arctan

⎛

⎝

√

1
a2

− 1
b2
sin θ sinϕ

√

1−sin2 θ sin2 ϕ
a2

+ sin2 θ sin2 ϕ
b2

⎞

⎠. (2.4)

Obviously, the Hamiltonian function H does not depend on the generalized coordinate ψ,
that is, the generalized momentum pψ is a constant. The generalized momentum pψ is the area
integral J1 (see (2.2)). The equations of motion of the body have a Hamiltonian form with the
Hamiltonian function (2.4), in which pψ is a parameter. We will assume that the parameter pψ
is the parameter that was mentioned in the statement of V.V.Kozlov’s Theorem 1. Let us
obtain the necessary conditions for the existence of an additional first integral analytic in pψ and
independent of the Hamiltonian function H.

3. Application of V. V.Kozlov’s Theorem 1

For any value of pψ the point

(pθ, pϕ, θ, ϕ) =
(

0, 0,
π

2
,
π

2

)

is the equilibrium of the Hamiltonian system considered. We denote

pθ = y1, pϕ = y2, θ =
π

2
+ x1, ϕ =

π

2
+ x2.

The units of measurement can always be chosen so that

πρv20la
2 = 1, A = 1.

We introduce also the following parameters:

pψ =
√
x,

1

C
= y,

b2

a2
= z.

In a neighborhood of the equilibrium point y1 = 0, y2 = 0, x1 = 0, x2 = 0 the expansion of
the Hamiltonian (2.4) has the form

H = H(2) +H(3) +H(4) + · · · ,

H(2)(y1, y2, x1, x2) =
1

2
y21 +

y

2
y22 +

√
xx1y2 +

(1 + x)

2
x21 +

1

2
x22, H(3)(y1, y2, x1, x2) = 0,

H(4)(y1, y2, x1, x2) =
1

2
x21y

2
2 +

5

6

√
xx31y2 +

(

z

4
− 1

2

)

x21x
2
2 +

(

x

3
+
z

8
− 1

6

)

x41 +

(

z

8
− 1

6

)

x42.
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Note that in the case of z = 1, i. e., when the rigid body is bounded by the sphere, the
expressions H(2)(y1, y2, x1, x2) and H(4)(y1, y2, x1, x2) exactly coincide with the corresponding
expressions obtained by V.V.Kozlov [1–3] when studying the problem of motion of a heavy
dynamically symmetric rigid body with a fixed point, with the center of mass situated in the
equatorial plane of the ellipsoid of inertia.

The characteristic equation of the linear system with the Hamiltonian function H = H(2) is
written as follows:

λ4 + (1 + x+ y)λ2 + y(1 + x)− x = 0. (3.1)

Obviously, the roots of the characteristic equation are purely imaginary if

y >
x

1 + x
.

Let E denote the subset of R2
+, where this inequality is satisfied. The ratio of the frequen-

cies λ1
λ2

= 3 if the parameters x and y satisfy the equation

9x2 − 82xy + 9y2 + 118x− 82y + 9 = 0. (3.2)

This is the equation of a hyperbola; for x > 0 and y > 0 its branches are entirely in E.
From the triangle inequality for the moments of inertia (A1+A2 � A3) it follows that y � 1

2 .
For any fixed y0 � 1

2 , there exists x0 > 0 such that the point (x0, y0) satisfies Eq. (3.2). Consider
a small interval (a, b) of variation of the parameter x, including the point x0. For x ∈ (a, b),
y = y0 the roots of the characteristic equation are purely imaginary and distinct. When x = x0,
the frequencies λ1 and λ2 are related by the equation λ1 − 3λ2 = 0. It remains to find out when
the secular coefficient h(4)1,−3 is zero.

After a linear canonical transformation (y1, y2, x1, x2) → (p1, p2, q1, q2) by the formulas

y1 =
1

1 + α2
p1 +

α2

1 + α2
q2, y2 =

1

α
p2 + αq1, x1 = q1 − p2, x2 =

α

1 + α2
(q2 − p1),

√
xα2 + (x+ 1− y)α−√

x = 0,

the quadratic part H(2) of the Hamiltonian function H is represented as follows:

H(2) =
B1

2
p21 +

K1

2
q21 +

B2

2
p22 +

K2

2
q22 ,

B1 =
1

1 + α2
, B2 =

y − 2α
√
x+ (1 + x)α2

α2
=

(1 + α2) (y − α
√
x)

α2
,

K1 = α2y + 2α
√
x+ 1 + x =

(

1 + α2
)

(

y +

√
x

α

)

, K2 =
α2

1 + α2
.

Now we introduce action–angle variables (I, ϕ) by the formulas

q1 = i

√

√

√

√

I1
2

√

B1

K1

(exp(−iϕ1)− exp(iϕ1)), p1 =

√

√

√

√

I1
2

√

K1

B1

(exp(iϕ1) + exp(−iϕ1)),

q2 = i

√

√

√

√

I2
2

√

B2

K2

(exp(−iϕ2)− exp(iϕ2)), p2 =

√

√

√

√

I2
2

√

K2

B2

(exp(iϕ2) + exp(−iϕ2)).
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Here i is the unit imaginary number. In the new variables the form H(4) will be written as
follows:

H(4) =
∑

0�|m1|+|m2|�4

h(4)m1,m2
exp(i(m1ϕ1 +m2ϕ2)).

The condition for vanishing of the coefficient h(4)1,−3 in the expansion of the function H(4)

can be reduced to the following form:

27x3z + 111x2yz − 159xy2z − 243y3z − 9x3 − 617x2y − 39x2z + 2093xy2 − 118xyz + 1701y3+

+ 621y2z + 653x2 − 4374xy − 59xz − 2727y2 − 129yz + 2633x + 543y + 7z − 29 = 0. (3.3)

Thus, the following theorem holds.

Theorem 2. Necessary conditions on the parameters y and z for the existence of an addi-
tional integral analytic in canonical variables and the parameter x and independent of the Hamil-
tonian function H in the problem of motion in the flow of particles of a dynamically symmetric
rigid body with a fixed point bounded by the surface of an ellipsoid of revolution whose center
lies in the equatorial plane of the ellipsoid of inertia can be found as the resultant of Eqs. (3.2)
and (3.3).

Remark 2. For z = 1, i. e., in the case where the rigid body is bounded by a sphere, Eqs. (3.2)
and (3.3) take the form

9x2 − 82xy + 9y2 + 118x− 82y + 9 = 0, (3.4)

18x3 − 506x2y + 1934xy2 + 1458y3 + 614x2 − 4492xy − 2106y2 + 2574x+ 414y − 22 = 0, (3.5)

and exactly coincide with the necessary conditions for the existence of an additional integral in the
problem of motion of a heavy dynamically symmetric rigid body with a fixed point and with the center
of mass situated in the equatorial plane of the ellipsoid of inertia, obtained by V. V. Kozlov [1–3, 6]. The
algebraic curves (3.4) and (3.5) intersect at two points (x, y):

(

4

3
, 1

)

and (7, 2),

which correspond to the Lagrange integrable case (A = C) and the Kovalevskaya integrable case (A = 2C).

Let us put in conditions (3.2) and (3.3) y = 2, i. e., consider a rigid body with a mass dis-
tribution corresponding to the Kovalevskaya integrable case in the problem of motion of a heavy
rigid body with a fixed point. Then condition (3.2) takes the form

(9x+ 17)(x − 7) = 0,

and can only be valid if x = 7. Substituting the values x = 7 and y = 2 into condition (3.3)
gives

12 000(z − 1) = 0.

Thus, we have the following statement.

Corollary 1. For a rigid body with a mass distribution corresponding to the Kovalevskaya
case, an additional first integral independent of the energy integral can exist only when the rigid
body is bounded by a sphere. In the case where a rigid body exposed to the flow of particles is
bounded by the ellipsoid, there is no additional first integral.
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Analysis of Eqs. (3.2) and (3.3), performed using MAPLE 7 symbolic computations software,
shows that this system has solutions

x = 0, y =
1

9
; x = −16

3
, y = 1; x =

4

3
, y = 1 (3.6)

existing for any value of the parameter z. The first two of the solutions (3.6) do not satisfy the
conditions

x > 0, y � 1

2

and therefore they have no physical meaning. As for the third solution, it corresponds to the
Lagrange integrable case (A = C). Thus, in this problem, for any shape of the ellipsoid (both
when it is prolate and when it is oblate), there is an integrable case corresponding to the Lagrange
case.

In addition to the three solutions (3.6), Eqs. (3.2) and (3.3) admit a z-dependent solution in
which y is a root of the quadratic equation with coefficients depending on z, and x is expressed
in terms of y and z:

(3z − 4)(7z − 52)y2 − (76z2 − 632z + 736)y + 20z2 − 432z + 592 = 0,

x =

(

4048z2 − 471z3 − 3200 − 2672z
)

y + 3252z2 − 54z3 − 17 424z + 18816

2(3z − 4)(7z − 52)((23z − 32)y − 38z + 56)
.

Among the parameters (x, y, z) that belong to this solution, one can find parameters that
have a physical meaning. These are, for example, the parameters

x =
57

23
, y =

30

23
, z =

1

5
.

Thus, for some parameter values, the necessary conditions for the existence of an additional
first integral in the problem of motion of a rigid body with a fixed point in the flow of particles
are satisfied. The study of existence of an additional first integral for such parameter values is
a problem which we will try to investigate in the future.

4. Conclusions

In this paper we have presented necessary conditions for the existence of an additional
analytic first integral independent of the energy integral in the problem of motion of a rigid body
with a fixed point in the flow of particles. The necessary conditions obtained are always fulfilled
in the case of motion of a dynamically symmetric rigid body with the center of mass lying on the
axis of dynamical symmetry of the body (the case similar to the Lagrange integrable case of the
classical problem of motion of a heavy rigid body with a fixed point) and these conditions are not
fulfilled for the dynamically symmetric rigid body with the center of mass lying in the equatorial
plane of the ellipsoid of inertia (the mass distribution similar to the Kovalevskaya integrable case
in the classical problem of motion of a heavy rigid body with a fixed point). Thereby, we have
proved the nonexistence of the integrable case similar to the Kovalevskaya integrable case in the
problem of motion in the flow of particles of a rigid body with a fixed point.
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