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The effects of differently charged Ge impurities on the local atomic structure and lattice

dynamics of α-quartz were studied. We have determined the equilibrium structures and

calculated the symmetrized local density of vibrational states for the Ge-doped α-quartz.
The frequencies of localized vibrations of A- and B-symmetries induced by Ge impurities

were obtained. Besides, we have analyzed what contribution the vibrations of atoms

located around the Ge impurities make to the localized symmetrized vibrations.
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1. Introduction

The object of interest of many papers1–15 is low-temperature modification of silicon

dioxide (α-quartz) due to its special properties. Its structure is described by either

the D4
3 = P3121 (a left-handed form) or the D6

3 = P3221 (a right-handed form)

space symmetry group and belongs to the trigonal crystal system. A primitive cell

contains three formula units (nine atoms); a hexagonal elementary cell consists of

three silicon–oxygen SiO4-tetrahedrons.

Various properties of α-quartz at the microscopic scale are often studied by

means of atomistic simulations.1–7 The latter employ quantum mechanics descrip-

tions, called “first-principles” or ab initio methods. These approaches make it

possible to distinguish two main lines. One of them includes the Hartree–Fock

theory that represents the full configuration interaction, coupled cluster, etc. On

the other hand, we may address the density functional theory (DFT) that allows dif-

ferent accuracy levels, namely, the local density approximation, the general gradient

approximation or hybrid functionals.
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The atomic structure and physics of vibrations of a perfect α-quartz are well

understood.8–12 In the case of defects, many extra phenomena can be observed,

for example, anomalies in specific heat, Raman scattering spectra or infrared ab-

sorption. The microscopic origin of similar phenomena is difficult to ascertain. In

particular, we need to know how the differently charged defects contribute when

they break the translational symmetry of the crystal lattice. This fact requires the

use of too large atomic clusters. For such systems, quantum chemical calculations

involve a major computational problem, and to solve it, we should apply a classi-

cal mechanics approach describing the atom–atom interactions through interatomic

potentials (called force-fields).13–16

The majority of studies concerning point defects in α-quartz have been devoted

to the characterization of the structure and electronic properties. Many aspects

regarding their vibrational properties are not completely clarified yet. Therefore, the

description of the dynamic processes in defective α-quartz is essential information

about defect vibrations.

One of the simplest point defects existing in α-quartz is an isoelectronic germa-

nium (Ge) impurity. In previous paper,17 we used the pairwise interionic potentials

to model the atomic structure and lattice dynamics of α-quartz with Ge+4 impu-

rities. However, no detailed information about charge state effect of Ge has been

acquired. Moreover, it is well-known that Ge impurity is a substitute for Si and

readily traps electrons to form Ge+3 in α-quartz.

The present paper’s goal is to generalize the earlier obtained results and to

thoroughly discuss how three states of Ge impurities such as Ge+4, Ge+3 and Ge+2

affect the structural and vibrational properties of α-quartz.

2. Simulation Methods

The influence of the differently charged Ge impurities on the local atomic struc-

ture and vibration spectrum of α-quartz was studied within a limited-size cluster

model, as described in Ref. 18. The model takes into account long-range interatomic

interactions with charged defects. It divides the Ge-doped α-quartz into spherical

regions: an inner region 1 and two outer regions 2 and 3, as shown in Fig. 1.

The optimization of the structures is achieved by minimizing the lattice energy.

All the expressions for these calculations can be found in Ref. 19. In order to

compute the symmetrized local densities of states (SLDOS) of phonons in α-quartz

containing charged defects, we utilized the recursive method.20,21 This approach

was already applied successfully.17,22

As is known, the O–Si–O chemical bonds exhibit an ionic covalent character.

Nevertheless, the two-body, rigid ion-type potentials are able to successfully predict

relevant structural, mechanical and dynamical properties. The studies15,23 focus on

this aspect.

Our calculations are based on the classical Born–Mayer model.15 It regards a po-

tential V (r) as a Coulomb term and a short-range two-body exponential function

1650206-2



October 25, 2016 17:10 IJMPB S0217979216502064 page 3

Vibrational dynamics of crystalline silicon dioxide with charged Ge impurities

Fig. 1. The structural model of the Ge-doped α-quartz.

altogether. The former accounts for the long-range electrostatic interactions; the

latter models, the repulsive and attractive dispersion energy between close pairs.

This simple analytical potential takes advantage of a pairwise form, easy and quick

to evaluate. So, the large-sized system can be simulated relatively easily. Further-

more, the potential parameterized by the van Beest–Kramer–van Santen (BKS)

parameters23 already gave some encouraging results for α-quartz.15,17

The graphic dependencies of the α-quartz potentials used in this work are shown

in Fig. 2. It should be noted that the Si–Si interaction has no short-range compo-

nent. A cutoff radius of 8 Å is chosen for the short-range interactions.

For the Ge-doped α-quartz, the potential parameters of the Ge–O interaction

are presented in Ref. 17. The above paper deals with an empirical fitting procedure

for deriving them. In this case, the potential has the same shape as in the Born–

Mayer model including the Coulomb interactions. Figure 2 represents the potential

energy corresponding to the Ge–O interaction. The effective charge value of +2.4 is

supposed to be neutral with respect to the Ge+4 impurity in the α-quartz lattice,

because the effective ionic charges for Si and O are determined to be +2.4 and

−1.2 in the BKS potential.23 These charges are considered necessary for better

accounting of α-quartz bond covalency. The model with formal ionic charges (qsi =

+4, qo = −2) reproduces the observed structural, elastic and vibrational behavior

of the worse crystal. Effective charges localized on Ge+3 and Ge+2 ions are negative

with respect to the crystal lattice, have fractional values and are equal to +1.8 and

+1.2, respectively.
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Fig. 2. The pair potentials of interionic interactions.

3. Results and Discussion

To construct the static equilibrium structure of SiO2:Ge, we first optimized the

structure of a perfect α-quartz crystal as in our previous work.17 The local relax-

ation occurred around the Ge+4 ion is shown schematically in Fig. 3. The values

obtained for distances between some ions in the Ge-doped α-quartz are summarized

in Table 1 (the notations O(1), O(2), O(3), O(4) refer to the labels as in Fig. 3).

In the Ge+4-doped α-quartz, the simulated Ge–O bond length is 1.638 Å for

O(1) (or O(2)) ion and 1.649 Å for O(3) (or O(4)) ion. These data are found to

Fig. 3. (Color online) The structural fragments of SiO2:Ge around the Ge+4 impurity. Gray

circles indicate the ions before the lattice relaxation, red circles — after the relaxation.
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Table 1. Distances (Å) between some ions in SiO2:Ge.

Charge of Ge impurity

Ion–Ion +2.4 +1.8 +1.2

Ge–[O(1) or O(2)] 1.638 1.714 1.806

Ge–[O(3) or O(4)] 1.649 1.730 1.827
O(1)–O(2) 2.774 2.896 3.047

O(3)–O(4) 2.704 2.820 2.962

be larger than the calculated Si–O bond lengths for perfect α-quartz, but a few

less than the Ge–O bond lengths for α-quartz like GeO2. In α-quartz, the Si–O

bond lengths are 1.598 (1.605) Å for two oxygen ions O(1) and O(2) and 1.606

(1.614) Å for the other two O(3) and O(4), where the numbers in parentheses are

experimental values.8 In α-quartz-like GeO2, the calculated Ge–O distance is 1.650

Å for the O(1) (or O(2)) ion, as Ref. 17 shows; the experimental value is 1.737 Å,

given in Ref. 24. Our results are in agreement with the first-principles cluster model

calculations,25 where it is pointed out that the substitution of Si atom by Ge one

causes an average Ge–O distance to be about 0.1 Å longer than the Si–O bond.

The analysis of interatomic interactions can explain the nature of structural

deformations in the vicinity of the Ge ion. Being inserted into the lattice, the

Ge+4 impurity diminishes the energy of the short-range interactions between the Ge

impurity and the nearest O-ions. The attraction of these pairs weakens as well. This

circumstance appears to cause an increase in distance between the Ge+4 impurity

and the oxygen ions.

The results demonstrate that the lattice relaxation behavior strongly depends on

the charge state of the Ge impurity. After replacing one of the Si+4 ions by the Ge+3

ion, the Ge–O or O–O distance between the nearest neighboring ions increases, see

Table 1. The DFT calculations for germanium-doped silica also indicate that Ge–O

bonds are elongated by about 0.2 Å.26 In the event of substituting the Ge+2 ion

for the Si+4 ion, the distance between the neighbors increases even more.

The next important point was to model the phonon SLDOS for both perfect

and defective α-quartz crystals. For this purpose, we wrote the Fourier transform of

the lattice Green’s function of the dynamical matrix in real space. For calculating

the phonon SLDOS, we resorted to the Lanczos algorithm27 using an appropriate

symmetry vector as starting.

We have calculated the phonon SLDOS projected onto the region containing

five ions: SiO4 (or GeO4), which is associated with the 15-dimensional atomic dis-

placement space. The Si (or Ge) ion executes one A-symmetry mode and two modes

symmetrized by the representation B. Both ions O(1) and O(2) or O(3) and O(4)

accomplish two A-vibrations and one B-vibration. The A-symmetry vibrations of

O ions are made up of one symmetric bending mode and one symmetric stretching

mode, the B-symmetry vibration is an asymmetric stretching mode. In Fig. 4, we

show the directions of the motion of A-type vibrations.
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Fig. 4. A-symmetry motions of the GeO4 unit. The X-axis is the C2-axis of rotation through

180◦.

The phonon SLDOS projected onto A-symmetry displacements of the Si ion in

perfect α-quartz and the Ge+4 ion in SiO2:Ge are presented in Fig. 5(a). As can be

seen, the Ge+4 ion contributes to shifting the low- and middle bands of the phonon

densities to the low-frequency part of the spectrum. Such a redistribution of the

phonon SLDOS can be explained by weakening the effective interaction between

the Ge+4 and its surrounding ions as compared to the Si-host lattice interaction in

perfect α-quartz. The SLDOSs of the defective and perfect crystals clearly differ in

peaks. In the first case, they correspond to the localized vibrations induced by the

Ge impurities.

According to Fig. 5(a), the Ge+4 impurity is responsible for four resonant A-

symmetry vibrations at the frequencies of 2.0, 5.6, 14.8 and 16.4 THz, which are

related with the movement of Ge+4 ion. Besides the resonant vibrations, the Ge+4

impurity also induces one gap B-symmetry vibration at the frequency of 30.4 THz,

see Table 2. The oxygen ions make a contribution in this gap vibration. Furthermore,

O ions can participate in two resonant A-symmetry vibrations of 16.4 and 34.0 THz.

Our calculations show that the other germanium defects: Ge+3 and Ge+2 also in-

duce resonant vibrations and one gap vibration at frequencies of 31.2 and 31.6 THz,

respectively. These gap vibrations are associated with the A- and B-symmetry mo-

tion of oxygen ions. The frequencies of localized symmetrized vibrations in SiO2:Ge

induced by the Ge impurities are listed in Table 2.

For example, Fig. 5(b) displays the phonon SLDOS projected onto B-symmetry

displacements of the O(3)- and O(4)-ions in α-quartz with Ge+4, Ge+3 and Ge+2

impurities. The redistribution of the density of states is observed in the middle-

frequency and forbidden bands. The middle band of the phonon SLDOS shifts

toward the low-frequency spectrum range. The peak in the forbidden band is dis-

placed rightward, to the higher frequencies when changing the charge state of Ge

from +4 to +2.
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Fig. 5. Phonon SLDOS: (a) projected onto A-symmetry displacements of Si ions in perfect α-

quartz (curve 1) and Ge+4 ion in SiO2:Ge (curve 2), (b) projected onto B-symmetry displacements
of O(3) and O(4) ions in α-quartz with Ge+4 ion (curve 1), Ge+3 ion (curve 2) and Ge+2 ion (curve

3). The arrows indicate the localized vibrations that involve Ge+4 ion. The vertical dotted lines
indicate the boundaries of the spectrum parts of the perfect α-quartz found from experiment.10

Table 2. Frequencies (THz) of localized vibrations induced by Ge

impurity.

Vibration symmetry

Ge charge Ion A B

+2.4 Ge 2.0, 5.6, 14.8, 16.4 2.0, 3.2, 8.4, 12.8

O(1), O(2) 16.4, 34.0 30.4
O(3), O(4) 15.2, 34.0 16.0, 30.4

+1.8 Ge 2.4, 5.6, 13.6 3.6, 8.0, 11.2
O(1), O(2) 15.6, 31.2, 33.6 31.2
O(3), O(4) 14.8, 31.2, 33.6 14.8, 31.2

+1.2 Ge 2.8, 5.6, 12.8 2.8, 6.8, 11.2
O(1), O(2) 14.8, 31.6, 33.2 31.6
O(3), O(4) 13.6, 31.6, 33.2 14.0, 31.6

The O(3) and O(4) ions contribute to causing one resonant B-symmetry

vibration and one gap B-symmetry vibration. Their frequency values depend on

the charge state of Ge impurity (see Table 2). The change of Ge charge from +2.4

to +1.2 leads to a decrease in the resonant mode frequency, while the gap mode

frequency demonstrates a slight increase.
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4. Conclusions

In this work, the simulation methods to investigate how different charged states

of Ge impurities affect the atomic structure and vibrational properties of α-quartz

were used. It turns out that the change in charge states of the Ge impurities leads

to strong deformation of the crystal structure. Besides, the phonon density dra-

matically changes as well. The values of the localized vibration frequencies are also

dependent on the charge state of the Ge impurities. The calculations make it possi-

ble to predict the appearance of a gap vibration caused by the Ge impurities. The

recursive method used allows estimating the contribution of the ion motion to the

localized vibrations induced by the differently charged Ge ions.
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