Large tandem repeats in mammalian genomes in silico and in situ

Ostromyshenskii D.I., Podgornaya O.I. Institute of Cytology RAS, St. Petersburg, Russia

Introduction

Large tandemly repeated sequences (or satellite DNA) are necessary part of higher eukaryotes genomes and can comprise up to tens percent of the genomes. Much of TRs' functional nature in any genome remains enigmatic. TR are the most variable among different types of eukaryotic sequences up to species-specificity. The ways of TR fast evolution are not determined yet. The next generation sequencing methods and increasing number of assembled genome provide the material for the bioinformatics extracting of the nearly full set of TR in any genome. The search for the large TR lead to 62 TR's family found in mouse genome and only two of them have been known before. The aim of the current work is to compare TR sets in the genomes of closely relates species available.

Materials and methods

Five mammalian genera was used: (1) chinese hamster *Cricetulus griseus* (Cricetudaeae, Rodentia); (2) syrian hamster *Mesocrucetus auratus*; (3) guinea pigs *Cavia* (Caviidae, Rodentia): *C. porcellus, C. apperea*; (4) bats *Myotis* (Vespertilionidae, Chiroptera): *M. brandii, M. davidii, M. lucifugus*; (5) cows *Bos* (Bovidae, Artiodactyla): *B. taurus, B. mutus, B. indicus.* Our pipeline takes into consideration the basic TR characteristic: monomer length, monomers' number in the array and the monomers' degree of diversity in the array. The methods include following steps: (1) extracting the whole TR set with TRF program ; (2) filters applied to the TR set extracted: arrays length > 3000bp, number of monomers > 4, entropy of array > 1.76; (3) nested arrays and arrays with different monomer length with similar sequences removed (4) TR set get split into families by Blast defined similarity; (5) TR families compared with Repbase to identify the known ones; (6) the resulting TR set of one species compared with the rest.

Species	Assembly	TR %
Mus musculus	Mm_Celera	0,122
	GRCm37	0,026
Critulus griseus	C_griseus_v1.0	0,158
Mesocricetus auratus	MesAur1.0	0,1
Cavia porcellus	Cavpor3.0	0,023
Cavia apperea	CavAp1.0	0,013
Myotis brandtii	ASM41265v1	0,084
Myotis davidii	ASM32734v1	0,047
Myotis lucifugus	Myoluc2.0	0,16
Bos indicus	Bos_indicus_1.0	0,023
Bos mutus	BosGru_v2.0	0,012
Bos taurus	Bos_taurus_UMD_3.1.1	0,074
	Btau_4.6.1	0,144

Table 1.The amount of large TR in mammalian genomes. Assembly indicated and large TR% in these assembly are shown. TR% counted as the ratio of all TR arrays sum to the total sequences

Cavia	porcellus	apperea		
	Cpor-123	Capp-123		
	Cpor-783	-		
	Cpor-14	Capp-14		
	Cpor-208	Capp-208		
	Cpor-109	-		
	-	Capp-1518		
N TR family	26	10		
Myotis	brandtii	davidii	lucifugus	
	Mbra-258	-	-	
	Mbra-17	Mdav-20	Mluc-381	
	Mbra-80-A	Mdav-159	-	
	Mbra-20	Mdav-41	-	
	Mbra-80-B	Mdav-80	Mluc-80	
	Mbra-148	-	Mluc-154	
№ TR family	133	105	26	
Bos	taurus	mutus	indicus	Repbase
	Btau-1406	Bmut-1402	Bind-1406	BTSAT4/BTAST5
	Btau-1413	-	Btau-1211	BTSAT2/BTAST3
	Btau-686	Bmut-702	Bind-686	BTSAT6
	Btau-48	-	-	
	Btau-54	-	-	
	Btau-18	Bmut-18	Bind-18	
No TR family	65	27	18	

Results

Genus *Cavia* (guinea pig). TR's family exist also in *C. porcellus* genome except the major TR for this species – Capp-1518. In C. porcellus genome there are two major TR – Cpor-783 is absent in the 2nd genome and Cpor-123 exists in *C. apperea* genome as the minor one.

Genus *Myotis* (bat). Only 5 TR families exist in three genome but most of TR families are species-specific. Major TR for *M. davidii* and *M. lucifugus* is common in sequence though differ in monomer length, but the same TR is minor one in *M. brandtii*. The major for *M. brandtii* is not identified in both other genomes at all.

Genus *Bos* (cow). There are three TR known for *Bos* in Repbase and all of them are found in all *Bos* assemblies. Still the major TR in all *Bos* assemblies differ: in *B. taurus* genome BTSAT4/BTSAT5 is a major TR while BTSAT6 major TR family in B. indicus genome. It is visible that most of the top TR families in genus *Bos* exist only in two genomes or

length in current database.

Family	Genome, %		Comments
	SRR396599_2	SRR396609_1	
49A	3.12	4.78	MAU-BglII_M11
44A	0.61	0.69	ERV
85A	0.07	0.08	L1
42A	0.07	0.54	
161A	0.07	0.05	B1
62A	0.06	0.05	
32A	0.04	0.49	
163A	0.03	0.03	
73A	0.03	0.09	

Table3. Tandem repeats (part) in *Mesocricetus auratus* genome. Red — tandem repeats was seected for FISH mapping

Table 2. TR found in the assemblies indicated on table 1; in each genera the species with higher number of TR families counted as reference (1st one); top 5-6 TR are shown. TR similar in sequence (not monomer length) placed at the same line. The TR major in amount in each genome is shown in grey. Names according to Repbase for 3 known Bos TR are shown.

Family	Genome content, %		Chromosome In silico	Chromosom e FISH	Comments
	SRR803182_1	SRR803174_2			
49A	0.93175	0.82487	8		ERV
11A	0.60389	0.34177	9-10		
79A	0.41075	0.38410	5,9-10,6,X		
272A	0.34222	0.34247	Х		B1
33A	0.27568	0.24621	5	5,1,2	SAU1.5
6A	0.16142	0.22529	5,6,8-10		
25B	0.14970	0.17584	9-10		
304A	0.14572	0.21242	5		ERV2
77A	0.08647	0.07590	5,2,8		
84A	0.07368	0.07757	all		Zn-finger
17A	0.03837	0.03306	6		
65A	0.03492	0.02827	Х		Tc1
25A	0.02910	0.02043	5	3,5,7,9-10	
27A	0.02075	0.01606	6		
146A	0.01946	0.01103	5		
62A	0.01518	0.00461	2	6,2	

Table 4. Tandem repeats (part) in *Cricetulus griseus* genome (assembly Cgr1.0 from sorted chromosome library). Red — tandem repeats was seected for FISH mapping.

even in one, i.e. is species-specific.

Figure 2. FISH with probe to 4 tandem repeats of *Cricetulus griseus*

Conclusion

Figure 1. FISH with probe to 4 tandem repeats of *Mesocricetus auratus*

The absence of assembled genome of closely related species put the limitation to the bioinformatics approach. We examined all the genomes available for this aim. The most exhausting analysis of major TR (one for each species) of ~300 animals and plants display no readily apparent conserved characteristics; individual clades likely differ in terms of their tendency for closely related species to have TR that share conserved sequence characteristics (Melters et al., 2013). We compared the TR sets. Our data evidenced that there are species-specific top TR, which are absent in genome of closely related species. In all three genera examined major TRs are species-specific and hardly exist in other species of genera even as a minor ones. This finding makes the "library" hypothesis of TR evolution questionable.

Acknowledgements The work was supported by Grant 15-15-20026 Russian Science Foundation Molecular and Cellular Biology grant from the Presidium of Russian Academy of Sciences, RFBR 11-04-01700-a