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Three di¨erent numerical algorithms are proposed for the simulation
of one-dimensional (1D) pulsating detonation wave (DW) propagation
in the periodic nonuniform medium using the shock-attached frame
(SAF) of reference. These algorithms (¤explicit,¥ ¤semi-implicit,¥
and ¤implicit¥) di¨er in the way of leading shock speed calculation.
The algorithms are analyzed in the problem of shock wave (SW) in-
teraction with the sine waves in density. We show that the ¤semi-
implicit¥ and ¤implicit¥ algorithms for the leading shock speed cal-
culation provide the most robust simulation but nevertheless fail at
a certain time at the beginning of the process because of the internal
shocklets interaction with the leading shock.

Introduction

The study of the dynamics of DW propagation in a medium character-
ized by nonuniform distribution of parameters is an actual problem in
the context of detonation engine development. Due to the unsteadi-
ness of the processes, the separate supply of fuel and oxidizer, the
conditions in the combustion chamber are far from uniform. The ar-
rangements with DW propagation in a channel with transverse (see,
for example, [1] and references therein) or longitudinal (see [2] and
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references therein) concentration gradients can be considered as ideal
limiting cases for the real life problems. The ¦rst one also includes
the problem of DW propagation along the inert gas layer(s) [3] and
the second one ¡ DW propagation through the inert gas gap(s) [4].
In our previous works, we studied the dynamics of 1D pulsating

DW in the SAF. The studies were performed with a one-step [5] and
a two-step [6] chemical kinetics models. In all considered problems,
a DW propagated in the uniform mixture. So, we decided to improve
our algorithm for simulating DW propagation in the nonuniform mix-
ture.

Mathematical Model and Numerical Algorithm

Let us consider reactive Euler equations coupled with a two-step
model of kinetics [7]. The governing system of equations is written in
the SAF (x, t):
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All notations are standard: D is the leading SW (LSW) speed; λi

is the variable of the induction zone progress which equals to 1 in
reactants and 0 at the end of the induction zone; λr is the variable of
the reaction zone progress which equals to 0 in the induction zone and
reaches 1 in products; H is the Heaviside step function; Ki and Kr

are the reaction rate constants in the induction and reaction zones,
respectively; Ea is the activation energy; Q is the heat release; and k
is the reaction order in the reaction zone.
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The interval [−L; 0] is considered as the computational domain.
On the rear left end of the computation domain x = −L, di¨er-
ent boundary conditions are imposed including Chapman�Jouguet
(CJ) conditions, extrapolation of zero order, and nonre§ecting bound-
ary conditions. On the right end of domain, the boundary conditions
correspond to Rankine�Hugoniot conditions for the shock propagat-
ing in the uniform (constant preshock parameters) or nonuniform
(nonconstant preshock parameters as known functions of time or
space coordinate) medium. The total number of computational cells is
denoted as N . The computational mesh is uniform. The Zel£dovich �
von Neumann �Doering (ZND) solution is used as an initial condi-
tion.

The computational algorithm is based on the principle of split-
ting by physical processes. Firstly, the gasdynamic equations are in-
tegrated on the time step with no chemical reactions included (s = 0).
The spatial discretization of the governing system is performed using
the ¦nite volume method. At this hyperbolic step, the Courant�
Isaacson�Rees numerical scheme in conservative formulation of the
second approximation order is applied. At the second step, the chem-
ical reactions are considered without convection terms. Such a system
is solved with the use of the explicit Euler method. The numerical
algorithm in general follows [5].

Methods of the Leading Shock Wave Calculation

The SAF formulation demands additional equations for the calcula-
tion of D. The governing system of equations in the characteristic
form along C+-characteristics is used [8]:
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Just behind the LSW, λr = 0. So, Eqs. (1) can be rewritten as
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Figure 1 Schematic of the Shu test [9]

Figure 2 The sketch to the al-
gorithm of the LSW speed equation
integration
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Di¨erent numerical meth-
ods can be used to ¦nd D
from Eqs. (2). We considered
three approaches, calling them
¤explicit,¥ ¤semiexplicit,¥ and
¤implicit.¥
Let us illustrate the ap-

proaches on the well-known Shu
test [9] considering SW interac-

tion with the sine waves in density (Fig. 1). The Shu test is an inert
analog to the problem of DW propagation in the periodic nonuniform
reactive medium [10�13]. The ¤explicit¥ method implies (Fig. 2):
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The speci¦c values of the parameters of the problem are: ρinit = 1.0;
ε = 0.2; x0 = −4.0; a = 5.0; and p0 = 1.0. The parameters with
the subscript ¢s£ are the unknown parameters just behind the LSW at
the next time step. They can be expressed through the LSW Mach
number Mn+1 using the Rankine�Hugoniot relations. The parame-
ters with the subscript ¢0£ correspond to the immediate conditions
ahead of the LSW. The density ahead of the LSW is also unknown
because the instantaneous LSW speed is unknown. The parameters
with the subscript ¢∗£ are calculated using linear interpolation be-
tween the points xN and x = 0 at the corresponding time layer. The
coordinate xn

∗
is found from the last equation of Eqs. (3) explicitly

and then the system of the ¦rst two equations for Mn+1 and ρn+1
0 is

solved using Newton iterations.
In the ¤semi-implicit¥ modi¦cation, the ¦rst equation in Eqs. (3)

changes:
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= 0 .

The remaining parts of the method are the same.
The ¤implicit¥ method of the LSW speed calculation reads:
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All the equations are solved for Mn+1, ρn+1
0 , and xn

∗
with Newton

iterations simultaneously.

Simulation Results and Discussion

All three methods were compared for Shu test simulation. The length
of the computational domain was equal to L = 10, the number of cells
was equal to N = 4000. The ¤explicit¥ algorithm failed at the time
of 1.311. The ¤semi-implicit¥ and ¤implicit¥ algorithms demonstrated
similar results that cannot be distinguished by eyes (see a solid line in
Fig. 3a). However, they both failed at the times greater than 2.043.
The main reason is the formation of the internal shocklets with very
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Figure 3 Density distribution in Shu test [9]: (a) comparison of the
SAF simulation (1) with the simulation from [9] (2) at the time of 1.8; and
(b) shocklets in the SAF simulation

sharp front (see Fig. 3b) in the considered problem. After several in-
teractions of these shocklets with the LSW, all methods failed. This
situation is somehow similar to that reported in [14]. In [14], the
SAF ¦fth accuracy order algorithm was proposed for simulating 1D
detonation wave propagation. However, the algorithm was applicable
only to the stable and weakly unstable detonation without internal
shock and DWs. The algorithm was improved recently in [15] to deal
with more unstable regimes but with a loss of accuracy. So, it is pos-
sible that the considered test is too challenging even for the implicit
SAF algorithms and they nevertheless can be used for the simulations
of not strongly unstable detonation propagation in nonuniform me-
dia. Another opportunity is more careful adjustment of the Newton
iterations in the implicit algorithm.
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