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The work is devoted to the numerical simulation of the known problem of a normally incident shock
wave - dense layer of particles interaction and the phenomenon of the pressure rise on the wall un-
der the layer. The novelty of the work is in the numerical approach which is based on the Godunov
solver for the Baer-Nunziato equations and the pressure relaxation procedure which takes into account
intergranular stresses in the solid phase. The algorithm based on the exact solution of the Riemann prob-

Keywords: lem provides a low numerical dissipation of the solid contacts and is robust at the explicit interfacial
Numerical simulation boundaries. The algorithm was described in detail; the source code of the Godunov solver for the Baer-
Shock wave Nunziato equations was provided. The full scale experiment of a shock wave - particles layer interaction
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was simulated. The shape of the pressure curve, obtained on the wall under the particles layer, was ex-
plained from the point of view of ongoing wave processes in the layer. A quantitative comparison of the
experimental and simulated pressure curves was carried out. Studies of the influence of parameters in
the intergranular stresses model on simulation results as well as reversible or irreversible character of
loading-unloading process were conducted. Obtained results were compared to the published simulation

Pressure relaxation

results by the other authors based on the R.I. Nigmatulin models.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Interaction of an air shock wave (SW) with an interface bound-
ary of two-phase gas-particles medium has been extensively stud-
ied over the last several decades. One of the major focuses of
this study has been the attenuation of SWs by granular filters.
A range of experimental and numerical works has been carried
out studying propagation of a SW in a channel and its interac-
tion with a granular or porous material located near the end wall
of the channel. It was experimentally indicated in (Gelfand et al.,
1975) that the peak pressure registered by a transducer on the
wall behind polyurethane foam was significantly higher than pres-
sure detected under the normal reflection of a SW of the same
Mach number from the rigid wall. Although the experimental re-
search in (Skews, 1991) was primarily focused on the dynamics
of waves reflected from the interfacial boundary back into the
gas, the gradual increase of the back wall pressure was also in-

* Corresponding author.
E-mail address: pavel_utk@mail.ru (P.S. Utkin).

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103718
0301-9322/© 2021 Elsevier Ltd. All rights reserved.

dicated. In (Baer, 1992), the Baer-Nunziato (BN) model (Baer and
Nunziato, 1986) was applied in attempt to describe this compli-
cated physical process numerically and simulate the experiments
(Skews, 1991). It was stated that after the shock hit the foam a
compaction wave (CW) occurred in the foam as gas permeated
into the porous material imparting momentum to the solid phase.
Later this phenomenon was investigated in a number of experi-
mental (Skews et al., 1993), (Ben-Dor et al., 1994), (Yasuhara et al.,
1996), (Seitz and Skews, 2006) and theoretical (Olim et al., 1994),
(Mazor et al., 1994) studies.

Our interest was in the development of approaches to numeri-
cal simulation of the interaction of a SW with a layer of particles
on an impenetrable surface using the BN model. Apparently, after
(Baer, 1992) the most significant progress in this field took place
in (Saurel and Abgrall, 1999) and numerous subsequent works of
these authors, see a review in (Utkin, 2019). The key advantage
of the BN model and its possible extensions in comparison with
other two-phase models is the hyperbolicity of the BN equations.
Although the defining system of equations is hyperbolic, it can not
be written in the conservative form due to the so-called nozzling
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terms in the right hand side of the system that are associated with
the local gradient of the volume fraction of the solid phase. A cor-
rect approximation of these terms is one of the difficulties that
arise while solving the BN system of equations. However, the hy-
perbolicity of the BN equations has led to an extensive work on
the development of the numerical schemes for its solution. The
HLL (Saurel and Abgrall, 1999), HLLC (Tokareva and Toro, 2010),
(Furfaro, Saurel, 2015), (Lochon et al., 2016), (Hennessey et al.,
2020), HLLEM (Dumbser, Balsara, 2016), AUSM (Tokareva, Toro,
2016), Godunov (Schwendeman et al., 2006), Rusanov (Saurel and
Abgrall, 1999), (Menshov, Serezhkin, 2018) and a number of other
schemes for the solution of the BN equations were developed.
Meanwhile, the efficiency of many of the proposed schemes was
shown only on the academic test cases like the Riemann prob-
lem. Usage of these schemes for solution of practical problems
is often a challenging issue due to the special cases as the van-
ishing phase case, see the terminology in (Schwendeman et al.,
2006), when the solid phase vanishes in some regions of the
computational domain. For example, the original HLLC method
(Tokareva and Toro, 2010) did not address the vanishing phase case
and it was improved later in (Lochon et al., 2016) and applied
for the simulation of a shock-bubble interaction and an underwa-
ter explosion. The Godunov method (Schwendeman et al., 2006)
is in the similar status. Although the vanishing phase case was
described in (Schwendeman et al., 2006), a robust numerical al-
gorithm of the Godunov method for all solid phase volume frac-
tion cases was not presented. As well as its application to the real
life problems with the exception of the simulations of deflagra-
tion and detonation waves initiation and propagation in the het-
erogeneous explosives (Schwendeman et al,, 2008). At the same
time, the Godunov method is a physically relevant approach for
solution of the BN equations with the minimal number of addi-
tional assumptions or simplifications. In (Fraysse et al., 2016) the
comparison of different numerical methods for solution of the BN
equations was carried out on a set of test Riemann problems. The
Godunov (Schwendeman et al., 2006) and the HLLC (Tokareva and
Toro, 2010) methods were noticed as the most accurate for all con-
sidered test cases. However, test cases in (Fraysse et al., 2016) also
did not contain problems with the vanishing solid phase. Compu-
tational cost of the Godunov method was considered to be one
of the major disadvantages. But in contrast to the HLLC method
for the Euler equations, the HLLC method for the BN equations
(Tokareva and Toro, 2010) also demands the iterative solution of
the system of non-linear algebraic equations. The Godunov method
is of our interest in this work due to its distinctive properties
among all Riemann solvers.

Previously we considered the problem of interaction of a
SW with a moving cloud of particles with free boundaries in
(Utkin, 2017), (Utkin, 2019). The initial volume fraction of par-
ticles corresponded to the dense column in the experiments
(Rogue et al., 1998). It was possible to reproduce the features of
the reflected and transmitted waves and the dynamics of the cloud
movement correctly without intergranular stresses in the solid
phase taken into account due to the free boundaries of the cloud
and its fast dispersion. Nevertheless, this factor was taken into con-
sideration in (Saurel et al., 2017). Intergranular stresses are impor-
tant in the problems with the underlying surface when a traveling
SW interacts with a dust layer, see (Fan et al., 2007), for instance.
The first and the main goal of this work was the development of
the numerical algorithm for the solution of the BN system of equa-
tions using the Godunov method (Schwendeman et al., 2006) tak-
ing into account intergranular stresses in the pressure relaxation
procedure. The algorithm has to be robust for the simulations with
explicit interfacial boundaries.

Moreover, we intended to examine the problem of interaction
of a SW with a particles bed located near the rigid wall described
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in (Gelfand et al., 1989). In the recent study (Sugiyama et al.,
2021), a similar mathematical model (BN-type equations and in-
tergranular stresses model from (Saurel et al., 2010)) was used
for the three-dimensional simulations of a blast wave interac-
tion with a layer of glass particles. The HLLC (Furfaro, Saurel,
2015) numerical method was used. Apparently, the approach of
(Furfaro, Saurel, 2015) is more computationally efficient than
(Tokareva and Toro, 2010) and the subsequent developments
(Lochon et al., 2016), (Hennessey et al., 2020), although this issue
was not analyzed, for example, in (Fraysse et al., 2016). However,
the HLLC method (Furfaro, Saurel, 2015) is also not so widespread
in two-phase simulations. One of the possible reasons is that the
HLLC method (Furfaro, Saurel, 2015) is formulated in the ideology
of discrete element method (Abgrall, Saurel, 2003) that differs from
the general finite volume method notations.

In (Britan et al., 1997), the process of SW - dense particles layer
interaction was studied experimentally and numerically. It was in-
dicated that the pressure curve near the back wall consisted of
the initial oscillations connected with the CW propagation and the
subsequent steady rise of the pressure during gas filtration. Experi-
ments (Britan et al., 1995) later simulated in (Surov, 2000) demon-
strated that oscillatory behavior is not inherent in gas-liquid foams
in contrast to porous medium. If the particles layer length was
small, the pressure rise on the wall was provided by the action of
the CW. The longer the particles layer was, the less was the value
of the peak pressure. A terminology comment should be made.
Compaction is an irreversible process which leads to the hysteresis
phenomenon when the granular media is subjected to a loading
- unloading cycle (Saurel et al., 2010). However, if the loads are
not very strong in comparison with the plastic limit of the gran-
ular material, intergranular stresses lead to the reversible process
of powder loading - unloading process. A wave in which both vol-
ume fraction and density of the solid phase are changed will be
referred to as CW in any case.

It was also stated in (Kutushev and Rodionov, 1999) and
(Gubaidullin et al., 2003) that a filtration wave in gas and a de-
formation wave in the solid phase could be observed due to a SW
- bed of particles interaction. A deformation wave in the skeleton
of a porous medium occurred under the influence of such forces as
the “Archimedes” force & - dp/dx, where @ is the solid phase vol-
ume fraction and p is the gas phase pressure, interfacial friction,
the gradient of intergranular stress of the solid phase and particles
inertia. However, the Archimedes force was stated to contribute
the most to the formation of pressure pulses on the back wall.

In (Britan and Ben-Dor, 2006), different particles were consid-
ered and it was experimentally shown that there was an optimal
particles layer length that led to the maximum value of the peak
pressure on the back wall. This layer length was different for the
particles with various sizes and densities. It was stated that, in
contrast to the high-porosity foams, interaction of waves was not
so important within the granular samples for the formation of the
pressure peaks on the back wall. As generally the porosity is far
lower in the granular materials than in foams, the waves attenuate
quickly in the sample, so the waves’ interaction contributes most
to the pressure peaks formation in the rather short granular beds.
Otherwise, it is the gas filtration that plays the major role in the
increase of pressure on the back wall as well as such effects as the
dry friction, rotation of particles and reduction of the porous space.
However, provided the incident SW is rather strong, it is the com-
paction that makes the greatest contribution to the pressure in-
crease. It explains why numerical models that do not account for
the gas filtration are still able to describe the experimental results
for the strong SWs with the good agreement (see, for instance, the
application of the BN model in (Baer, 1988)). So, the second goal
of this work is the numerical study of the qualitative and quantita-
tive characteristics of the SW - particles layer interaction (Gelfand
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et al.,, 1989) (the phenomenon of the pressure rise on the wall un-
der the layer, the amplitude of the main pressure peak, the oscil-
latory nature of the pressure curve) using the BN model in com-
parison with the simulations from (Kutushev and Rudakov, 1993)
in which the R.I. Nigmatulin model (Nigmatulin, 1990) was used.

This paper is organized as follows. Section 2 outlines the defin-
ing system of equations. In Section 3, the numerical algorithm used
in this study is presented in detail. Attention is paid both to the
hyperbolic step of the algorithm (Section 3.1) also clarified in the
Appendix and to the pressure relaxation step taking into account
intergranular stresses (Section 3.2). In Section 4. two verification
problems are considered. Section 4.1 addresses the Riemann prob-
lem for the reduced BN system of equations. In Section 4.2. the
problem of SW - particles cloud interaction (Rogue et al., 1998) is
examined. Section 5 covers simulations of the experiment (Gelfand
et al., 1989) on a SW - particles layer on the wall interaction in-
cluding both reversible (Section 5.2) and irreversible (Section 5.3)
models. In Section 6. we discuss obtained results in the scope of
existing simulations of SW - particles layer interaction problem.
The conclusions are drawn in the final Section.

2. Mathematical model

The mathematical model was based on the BN system of equa-
tions (Baer and Nunziato, 1986) with modifications and improve-
ments from (Bdzil et al., 1999), (Saurel and Abgrall, 1999) and
(Saurel et al., 2010):

u; + fy(u) = h(w)ay +p +s, (1)
ra 0 — F
ap apv 0 0
apv a(p* + p) p 0
u=|apE |, f=|av(pE+p) |, h=| pv [,p=| —(P+B)F |,
ap oapv 0 0
apv a(pr? + p) -p 0
LapE av(pE + p) —pv PF
r o
0
~f
s=|-f-7],
0
f
L f-v
a+a=1,
N N R 72 v? ¥ p+ymo
E=—+eé(p.p)=5+ == E=S+e(p.p)=5+ ,
5 TeB.p) =3 55 —1) 5 Tepp) =5 oy —1)
ao
F=——(-p-
MC( B)

Here t is the time, x is the space coordinate, « is the volume
fraction, p is the true density, v is the velocity, p is the pressure,
E is the specific total energy, e is the specific internal energy, y
and 7y are the parameters in the stiffened gas equation of state
(EOS) for the solid phase of particles, y and my are the analogues
parameters for the gas phase EOS, u. is the coefficient of com-
paction viscosity, § is the configuration pressure or intergranular
stress. The bar superscript was used to indicate solid phase quan-
tities. In simulations, the ideal gas EOS for the gas phase was used
with my = 0. However, we left this parameter in the formulas of
the numerical algorithm further so that it is valid for other prob-
lems. For example, stiffened gas EOS for both phases is necessary
for the simulation of high-speed impact of two metal plates using
two-fluid approach (Utkin and Fortova, 2018).
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Nozzling term h(u)ay is the specific feature of the BN system
of equations. Velocity ¥ and pressure p are interfacial variables.
They were chosen as in (Baer and Nunziato, 1986), although other
options were also possible (Saurel et al., 2010), (Lallemand et al.,
2005):
p=p V="

Vector p contains pressure relaxation terms. Following
(Saurel et al, 2010), two approaches for the pressure relax-
ation were considered. The first one corresponds to the stiff local
interfacial boundary equilibrium and, consequently, the reversible
loading-unloading of the particles layer. The second approach
implies a switch between a stiff relaxation and a compaction with
a finite rate F and refers to the irreversible compaction. For a
stiff relaxation the following mechanical equilibrium condition
at the interfacial boundary is used (Baer and Nunziato, 1986),
(Saurel et al., 2010):

p=p+8. (2)
__dB 1-a (B@)\ "
ﬁ:apmz—ap-a-n-lnl_go((:)> , (3)
__JBu(@), ifog<o<1,
B@) = {O, other\t/vise, (4)
Bu(@) = a[by (&) — by (erit) + b2 (@)]", (5)

bi(@)=(1-a)In(1—a),by(@) = (1+In(1 = Ferit)) (& — Aerit)-
(6)

Here B(&) is the potential energy of compaction, a and n are
the empirical coefficients that characterize a considered two-phase
medium , & is a threshold value of the solid phase volume frac-
tion. If & exceeds &, compaction is enabled and B(&) becomes
greater than 0. The model (2) - (6) was developed in (Saurel et al.,
2010) after simulation of reversible and irreversible powders com-
paction on the basis of a two-phase one-velocity BN-type ap-
proach. The values of &, a and n were obtained from the analysis
of the experimental data on quasi-static compression of different
powders. The relations, resembling (4) and (5), might be found in
older works devoted to the internal ballistics problems (Koo et al.,
1976). In those works intergranular stress was used as pressure in
solid phase of gun powder granules that prevented their excessive
compaction during the shot. In (Favrie and Gavrilyuk, 2013) the
model (Saurel et al., 2010) was improved in order to take into ac-
count elastic and plastic deformations simultaneously. The model
(Saurel et al., 2010) was extended to the two-velocity model later
in (Saurel et al., 2014) and to the model for dilute and dense two-
phase flows (Saurel et al., 2017). The relations (3)- (6) were also
used in the work (McGrath et al., 2016). However, the details of
the numerical algorithm including the treatment of vanishing solid
phase case were omitted in (McGrath et al., 2016).

Vector s in (2) took into account source terms. The drag force f
was defined following (Gidaspow, 1994), (Houim and Oran, 2016):

f=K@-v).

0.75C, 22471 ify > 0.8,

o265

K= e |V
{150;)‘;2/'6\& + 1,75%, ife < 0.8,

¢ | are[1+0.15(@Re)**]. ifaRe < 10°,
- 0.44, ifaRe > 10°,
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Fig. 1. The schematic of phases complete decoupling case: (a) a solid phase exists in cells i, i+ 1, (b) a solid phase is absent in cells i, i + 1.

v—v|d
Re = u’

Mvis
where d is the particles’ diameter, jt,;s is the dynamic gas viscosity
coefficient.

3. Numerical algorithm

The computational algorithm was based on the Strang splitting
principle:

U;H—l = LerelathU?~ (7)

Here U’}“ is the unknown grid function, j is the spatial in-
dex, n is the time index. At the hyperbolic stage of the algorithm
denoted as operator L;, the defining system of equations (1) was
solved with p =0 and s = 0. After that a pressure relaxation pro-
cedure L, was implemented. Finally, non-differential algebraic
source terms that describe interfacial interaction were taken into
account and this step of the algorithm was denoted as L;.

3.1. Hyperbolic step

The computational domain was a one-dimensional segment of
the length L which is divided into N uniform cells. The cells were
enumerated using index i from 1 to N. The size of the compu-
tational cell was Ax = L/N. The construction of a finite-volume
scheme for the current computational cell i started with the analy-
sis of the gaps |, —af"| and |&]; — &[] (see Fig. 1). Signs “+”
and “-” in the superscripts in Fig. 1 denote the reconstructed val-
ues. For the increase of the accuracy order in space, a component-
wise reconstruction of the conservative vectors in the computa-
tional cells using a minmod limiter was carried out:

1
Ut = U7 + iAx(aU/ax),f‘,

| § [ § L no_gn
n_ . i i—1 i+1 i :
(0U/0x); = mmmod( A A ),1

¥ (a.b) = 3 (sign(@) + sign(b)) - min ({al. b))

Formula (8) was valid for the inner cells of the computational
domain. For the boundary cells, the gradients of the conservative
vector components were taken equal to zero:

au\" [au\"
() (2) -
X 1 N

We will now consider possible situations for the relation be-

5N+ SN— SN+ y—
tween ¢ and &;'", ¢f'" and &;;.

3.1.1. Case of phases complete decoupling
This case was characterized by the following relations:

SN+ S5N— Sn— SN+
|Oti7] - | = &decouple> Oliﬂ - = Edecouple> (9)

where &gecouple Was a small positive number. This case included
both situations when a solid phase was present or absent in neigh-
bor cells. A solid phase was considered to be absent in a cell when
& was less than &g, aps, Where €giqp aps Was also a small posi-
tive number. The relation &gecouple > Edisp_abs Was considered to be
true. In the present work, the following small constants were used
in all simulations: &gecoupte = 107>, &isp_abs = 107°.

Both inequalities (9) should be valid simultaneously. The gradi-
ent & was considered to be zero in cells i, i+ 1 and the defining
system (1) was split into two independent subsystems of Euler-
type equations for each phase:

~dec ~dec /_dec —~dec @ . ~dec ﬁfv . ~
u +fy (u ):O,U =|apl |=q-u, f = &(pii+p) =af.
apE o(pE + )
(10)
~dec  ~dec /_dec ~dec ap . ~dec apv ~
u +fy (u ):O,u =|lapy|=a-u, f = ot(pu2+p) —a f.
o pE a(pE+p)
(11)

Since &y = 0, then & = const and « = const. So, each of the sys-
tems (10) and (11) was solved using the classical Godunov method
for the single phase Euler equations (Godunov et al., 1976) accord-
ing to the realization details in (Toro, 2009):
~Godunov /~n+ ~n— ~Godunov /~n+ ~n—

Fii12 (Ui an+1) —Fi_p (Ui—lv U; ) 0

~n+1 ~n

U —-U
AT Ax -
1 " ~Godunov /~n+ ~n— ~Godunov /~n+ ~n—
f]i _ ﬁi Fii12 <Ui sUi+1) —Fi_1p2 (Ui—l’ U; ) 0
Atn + Ax -
A time-step At™ was chosen dynamically from the stability con-
dition:
A" = CFL- min Ax

)

Eo\ orf+a [ |+

¢ \/yp;jo Cz\/ypjfo,

where c is the speed of sound, CFL is the coefficient ranging from
Oto 1

(12)
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The case of phases complete decoupling was the most trivial
one among the considered. At the same time, it was most often
implemented in the simulations because it corresponded to the
subdomains with pure gas and subdomains inside the particles
layer at some distance from it boundaries. A solid phase volume
fraction remained unchanged in the cell i and was updated on the
next time step: a”“ al'. Therefore, in case of phases complete
decoupling, vector of conservative variables at the end of the hy-

perbolic step was as follows:
o

7n,\n+l

a; U
~n+1

n
Oli Ui

n+1 _
Ui =

3.1.2. Case of a solid phase volume fraction gap

Suppose now that at least one of the conditions (9) (for in-
stance, the second one for the edge i+ 1/2) was not valid. Then
the decoupling approach from the Section 3.1.1 was applied for an-
other edge only and provided not the updated conservative vari-
ables vector in the current cell i but only the numerical flux vec-
tor:

0

—n ~Godunov /~n+ ~n—
o . Fi_1p Uiz, U; )

n ~Godunov /~n+ ~n—
o . Fi_ip (Ui—p U; )
in the following coupled finite volume scheme:
U?“ - n FL(U?+ U?ﬂ) (U:HrUn ) -0
Atn Ax ’

As for the edge i+ 1/2 the gap in & was significant, the Go-
dunov numerical flux for the BN equations (Schwendeman et al.,
2006) should be written:

Fr (U,"+1,U" )_

fl uurun] |- H(UM, UT) Jif T < 0,
F. (Un+ U;“+1) Riemann problem solution, non-conservative part of the full flux (13)
=[yn+ yn— sei
full flux f(U [Ui ’Ui+1])’lfvc.i+1/2 > 0,
conservative part of velocity of the
the full flux solid contact
n+ - se=n
Fe (U, UL = { SO V) e < (14)
[ £ * _ e
—_— £(U[U U ) + H(UP . U ). 660 144 > 0.
full flux

The non-conservative part of the full flux is calculated using the
relation below:

Wiy (O_‘iﬂl - dz‘")
P,y — Piay
1 Al o n
(Un UTM) vc,i+1/2(pt+l i1 p;a; ) (]5)
0
(pz+1az+] pn&?)_
L Vi1, (pz+1°‘ p',?ozlﬂ)_

If both conditions (9) were not valid, the numerical fluxes for
both edges were calculated using (13), (14). The key point was the
construction of the Riemann problem solution U*[.,.]. In turn, it
also contained two distinct cases, namely the case of solid phase
existence from both sides of the edge (see Fig. 2a) and solid phase
vanishing case (see Fig. 2b).

The algorithm of the Riemann problem solution U* for the
states U; and Uy from different sides of the discontinuity included:
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- Finding initial guesses for the gas and solid pressures, gas
and solid velocities at the solid contact from the solution of
the classical single-phase Riemann problems U (UL UR) and

—~% o~

(ULv UR)

Iteratlve solution of the system of four (the case from Fig. 2a) or
three (the case from Fig. 2b) non-linear algebraic equations us-
ing Newton solver to find gas and solid pressures to the left and
to the right from the discontinuity. In the case from Fig. 2b, the
solid phase vanished in the cell i+ 1 so the solid phase pres-
sure here did not have the physical meaning. So, the system of
three equations to find solid phase pressure to the left and gas
pressure to the left and to the right of the discontinuity was
solved. Velocity of the solid contact that was used in (13)- (15)
was also found. The systems of non-linear algebraic equations
and their Jacobians are written in the Appendix;

Sampling the total solution of the Riemann problem in gas and
solid phases.

For more details, our C++ code is available (Computer Code
for the Godunov Solver, 2020). It is not the constituent part of
the whole code directly, but it is a clarified and extensively com-
mented Toro-like code for the solution of a single Riemann prob-
lem for the BN equations, implemented for the case of a solid
phase volume fraction gap when solid phase exists on both sides
of the initial discontinuity (the case from Fig. 2a).

The accuracy of the numerical method in the hyperbolic step
in time is equal to unity due to the explicit Euler time integra-
tion scheme. The overall accuracy of the numerical algorithm is
also equal to unity because of the properties of the Strang splitting
scheme (7) (Toro, 2009). The overall accuracy of the numerical al-
gorithm in space is equal to two on smooth solutions due to the
properties of minmod reconstruction (Toro, 2009).

3.2. Relaxation procedure and algebraic source terms

For the simulation of reversible loading of the layer the stiff
pressure relaxation was realized. Initially in (Baer and Nunzi-
ato, 1986) the finite rate of pressure relaxation was defined by the
term F in (1). Transition to (2) was carried out under the assump-
tion of u. — 0 and so the specific value of y. was not necessary
for the stiff pressure relaxation. The following system of ordinary
differential equations was solved:

da _
e~ F,
d(ap) -0
d(apv) _
Tdr T 0,
d(apE) — (16)
d(OlP) -0
d(ozpv)
Tt =0,
d(@pE
@E — —(p+ B)F.

From the second, the third, the fifth and the sixth equations of
(16) velocities of the solid and gas phases remained constant at
this stage. Using this fact and the first equation the fourth and the
seventh equations were rewritten as:

d(ape)  da d(ape)
a - Paa @ +ﬂ)dt
The consequences of the second and fifth equations were:

do adp da

da __odp dd__adp
dt =~ pdt’dt —  pdt’
Then the fourth and seventh equations became:

-r(l) -oemi(l)
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Fig. 2. The schematic of the case of a solid phase volume fraction gap: (a) solid phase exists from the both sides from the edge; (b) solid phase vanishing case.

After the discretization and approximation of the derivatives
(Saurel and Lemetayer, 2001) these equations were written in the
following way:

_%(er»] + pn)(pnlﬂ - #)s
gn+l _gn — _ 2( n+1+/3n+1+p +ﬂ )(p”“ _%)

The usage of the stiffened gas EOS for the particles and for the
gas phase led to the following system of non-linear algebraic equa-
tions to find p™!, p"*t1 and pntl:

en+1 —_eh =

p4ymo _ pMyme 1 i+l 1

s~ gt = —3 (P ) (e = )

PRy PR 1 (] n+1 n n

e L heh =5 (P BT 4 Pt A7) (17)
11

ﬁnﬂ ﬁ

anpn

pn+1 pn+1 -

Here the constraint o1+ g"1 =1 was also taken into ac-
count. The system then was reduced to one non-linear equation
with the unknown $"+! which was solved numerically using New-
ton’s iterations:

PIE =PI — (BT 19 (B,
ooy < PO 70 ey
J 7 - DA} 7 - Dp"
i 1
(p”“+ﬁ( 51 + p" + B(PM)) St~ i |
J
(18)
/(-n+1) 1 dp?ﬂ dﬁ( n+1)
Y \0; - ;3'?“()'/ —-1) d,C_)'.”] d,o}“l

n+1+13( n+l)+1-/7.-[0

( n+l)2(y _ l)

1 n+1 nl n ~n
-——— (0} +B(p]T) + "+ B(P")
S e )
1 dp?ﬂ dﬂ( n+1) 1 1

2 d,é}”l dp;z+1 Iéjr}ﬂ /‘)n
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Fig. 3. The typical view of ¢ function (18) in verification simulation from
Section 4.2 The time instant is 560 us, x = 1.4m.

where j denotes iterations index and

1 (_ym _ p" Pty o p
ot ( r-1 )+ e o
pn+l (,0”“) J pp+1 (,5'.1“)
J 1 _y+1 1 P J
YRR n
ot 20-1) T 2p
-1

1 1 a"p"
T\ gnpn G+l gnpn
Pt P P

Parameters calculated on the previous stage of the Strang split-
ting scheme were taken as initial values in Newton'’s iterations. It
can be seen from Fig. 3 that Eq. (18) had only one possible solution
for the range of parameters typical for the considered problem. The
root of ¢ function in general was found within 1-2 iterations with
the accuracy at least |(,0]“L] j’.‘“)/ﬁ}?“| =10"7. Then the rest
parameters were found:

vn+1 anﬂ —a ,0 /,O”H

+ IBn+1

L Dnﬂ =" 15n+1 — pn+1

n+1 _ 1-— OlnH

o
For the simulation of an irreversible compaction of the particles
the system (17) was solved only if p" > p" + 8" and &" > &4isp_aps-
Otherwise the compaction with the finite rate F was taken into
account at the final stage Ls of the splitting procedure (7).

The final stage of the numerical algorithm took into account the
physical processes described by the algebraic source terms in the
vector s and possibly vector p in case of irreversible compaction
in (1). The solution from the previous pressure relaxation step was
taken as the initial condition. The system of ordinary differential
equations was solved numerically using explicit Euler scheme.
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4. Verification
4.1. Riemann problem

The Riemann problem for the reduced BN equations (without p
and s terms in (1)) from (Schwendeman, 2006) was considered as
a test for the non-vanishing solid phase case. Computational do-
main was a segment [0;1]. Non-penetrating conditions were im-
posed at the boundaries. The following dimensionless parameters
were used as the initial data to the left and to the right of discon-
tinuity at x = 0.5:

O_K]_ =0.8, ,5]_ =1.0, l_/L =0.0, 15L =1.0, poL = 0.2, VL= 0.0, pL = 0.3,

O_[R =0.3, 15R =1.0, DR =0.0, f)R =1.0, PR = 1.0, v = 0.0, Pr = 1.0.

CFL number was equal to 0.8. This test case is available as a
sample in our computer code (Computer Code for the Godunov
Solver, 2020). Fig. 4 shows the convergence of the numerical so-
lution to the exact one with grid refinement.

4.2. Rogue shock tube

In our previous study (Utkin, 2017), (Utkin, 2019), we focused
on the parametric numerical simulation of a SW - particles cloud
interaction problem (Rogue et al., 1998) using the HLL method
(Saurel and Abgrall, 1999) and the Godunov method (Schwende-
man, 2006). Unlike previous work, intergranular stresses in the
solid phase were taken into account in the stiff pressure relaxation
procedure here. Similar to (Saurel et al., 2010), we did not take into
account irreversible compaction of particles here.

The statement of the problem corresponded to the full-scale ex-
periment (Rogue et al., 1998) and was the same as in (Utkin, 2017)
and (Utkin, 2019). A SW with Mach number M = 1.3 interacted
with a cloud of glass spherical particles of the diameter d =
1.5mm and the initial volume fraction &, = 0.65. The initial true
density of particles was py = 2500kg/m3. The length of the com-
putational domain was 2.8 m. The left boundary of the domain was
x = 0. The coordinate of the left boundary of the cloud of parti-
cles was equal to x; = 1.39m, the coordinate of the right bound-
ary was Xg = 1.41m. At the initial time moment a SW was located
at the point with the coordinate xy that is at the right boundary
of the cloud and moved from the right to the left. The gas pres-
sure was recorded with the use of three transducers located at
the points with the coordinates x; = 0.692m, x, = 1.367m (down-
stream transducers) and x3 = 1.520m (upstream transducer). At
the initial time moment the area [0; xg] was filled with the qui-
escent air under the normal conditions. The non-penetrating con-
dition was set at the left boundary, the inflow condition with the
parameters behind the SW with Mach number 1.3 was set at the
right boundary. The simulation time was 4 ms and corresponded
to the compression phase duration behind the incident SW in the
experiments (Rogue et al., 1998). Parameters in (3)- (6) used in the
simulation were close to (Saurel et al., 2010):

@it = o, @ =3-10*]/kg, n = 1.02.

Parameters in the stiffened gas EOS for the solid phase were the
following (Utkin, 2017):

¥ =2.5and 7, = 10° Pa. (19)

In our simulation, a cells number was equal to 22 400, CFL
number was equal to 0.5.

The evolution of the solid phase volume fraction at the initial
time moments was analyzes for both cases - with and without
intergranular stresses. Interaction of an incident SW with a cloud
led to the CW in the solid phase and filtration wave in gas. Fig. 5,
left illustrates the dynamics of the forward propagation of the CW
along the particles cloud.
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After that a CW interacted with a free boundary of the cloud,
reflected from it and propagated to the right followed by some
kind of the analogue of solid phase rarefaction wave. Up to the
time instant of about 0.15 ms, a maximal solid phase volume frac-
tion decreased below & and from that time configuration pres-
sure was equal to zero. Fig. 6 demonstrates the comparison of
simulations with and without intergranular stresses. The increase
of & up to 0.672 was observed in the case without intergranular
stresses in contrast to about 0.652 in the case with intergranular
stresses. At the same time the leading edge of the “compacted”
cloud moved at longer distance (see Fig. 6b). Interaction of the in-
cident SW with the dense particles cloud led to the formation of
the reflected and transmitted waves (see Fig. 7). Pressure transduc-
ers No. 1 and 2 detected a transmitted wave, transducer No. 3 - a
reflected wave. The relative error in comparison with the experi-
mental data for the transducers No. 2 and 3 did not exceed 3%. The
simulation correctly reproduced the change in the rate of pressure
curve growth on the transducer No. 2 at a time of about 2.5 which
was associated with the passage of a cloud of particles through
the point at which the transducer was installed. On the transducer
No. 1, the maximum relative error was about 5%. The influence of
the intergranular stresses on the intensities of transmitted and re-
flected waves appeared to be negligibly small although the dynam-
ics of cloud motion was more relevant from the physical point of
view at the initial stages of the process in the simulation with in-
tergranular stresses.

The leading edge of the cloud remained very sharp due to the
usage of the Godunov method (see Fig. 6). Its thickness in terms
of computational cells increases from approximately 5 at the time
moment 0.2 ms to approximately 20 at the time moment 1.4 ms.
It was shown in (Utkin, 2019) that the usage of the HLL method
led to about 5 times greater spatial smearing of the leading front
of the cloud at the final time 4 ms as well as the lowering the
maximal solid phase volume fraction in the cloud up to about 0.3
instead of 0.5 in the simulation using the Godunov scheme.

5. Interaction of a shock wave with a layer of particles near a
rigid wall

5.1. Statement of the problem

Statement of the problem corresponded to the full-scale experi-
ments (Gelfand et al., 1989). Experiments were performed in a ver-
tical shock tube 3 m long. It consisted of a high-pressure cham-
ber filled with nitrogen or helium which was separated from the
low-pressure chamber filled with air under normal conditions by
a diaphragm. As a diaphragm was removed, a SW was generated
and it interacted with a layer of polystyrene particles 20 mm thick
(see Fig. 8). The diameter of the particles was 0.2 mm and the ini-
tial volume fraction of particles constituted 0.48. The low-pressure
chamber was equipped with several pressure transducers. We were
interested in the wall pressure under the particles layer. Therefore,
the data from the correspondent transducer was reproduced in the
simulations.

Similar to Section 4.2, we consider a one-dimensional frame of
reference Ox. Point O corresponded to the left boundary of the
computational domain with a length of 0.37 m. The coordinate of
the left boundary of the spherical particles layer was x; = 0.35m,
while the coordinate of the right boundary coincided with the
right end of the computational domain and constituted xg = 0.37
m. The initial true density of the solid phase was py = 1060kg/m?>.
At the initial time moment the SW was located at the point with
the coordinate xs = x; and moved from the left to the right. The
area [xs; Xg] was initially filled with the quiescent air (the specific
heat ratio was y = 1.4, my = 0) with the density pg = 1.2kg/m?3
and under the pressure po = 10° Pa. In the area [0; x5], we set pa-
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Fig. 4. Solution of the Riemann problem for the reduced BN equations using the Godunov method (second order in space) on three different grids in comparison with the

exact solution.

rameters behind the SW with a Mach number M = 1.36 propagat-
ing in the positive direction of the axis Ox:

oy = 1.95kg/m3, vy = 179.97 m/s and py; = 2.00 - 10° Pa.

The non-penetrating condition was set at the right boundary,
the inflow condition with the parameters py, vy and py was set
at the left boundary. Parameters of the solid phase stiffened-gas
EOS were the same as in the Rogue test. The influence of those

parameters in the considered problem of SW- particles layer in-
teraction was very small, see Section 5.2. As a result of another
parametric study (see also Section 5.2), the following parameters
in the intergranular stresses model (2) - (6) were chosen:

Wit = 0.48, a = 10°J/kg, n = 1.02.

The variation started with the basic parameters from
(Saurel et al, 2010) that were obtained from the analysis of
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moments in the simulation with intergranular stresses. Here and further the black dashed line denotes &, level in (4).
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Fig. 6. Predicted spatial distributions of the solid phase volume fraction at the successive time moments with a gap 0.2 ms: (a) without intergranular stresses; (b) with

intergranular stresses. Dots denote computational cell centers.

experiments on compression of HMX and NaCl in the pressure
range of 0.1 - 25 MPa. Computational cell grid size was equal to
Ax =0.125 mm.

Experiments (Gelfand et al, 1989) were also simulated
in (Kutushev and Rudakov, 1993) and (Fedorov and Fe-
dorchenko, 2005). The latter one used a dusty gas mathematical
model and therefore the simulation of this problem was carried
out with a volume fraction of particles being equal to 0.015.
For this reason, the effects of intergranular stresses in the solid
phase were not taken into account, and, in fact, only waves in the
gas phase were described. In (Kutushev and Rudakov, 1993), R.I.
Nigmatulin model (Nigmatulin, 1990) was used. The model took
into account intergranular stress in the phase of particles. The
model of intergranular stresses was more complex than (3) - (6),
but also had a threshold form. Further, the obtained results will
be compared to the data from (Kutushev and Rudakov, 1993).

5.2. Results: reversible loading-unloading of the layer

Initially, the problem was considered using the stiff pressure
relaxation everywhere. Normally incident SW interacted with the
particles layer that led to the formation of reflected wave propa-
gated upstream in the pure air (see Fig. 9a). Gas penetrated inside
the layer as a compression wave with a smeared front. CW propa-
gated in the solid phase. Its movement to the right across the layer
was accompanied by the increase of the solid phase volume frac-
tion and, hence, the origin of the configuration pressure.

The period of time from t~0.06ms to t~0.14ms corre-
sponded to the sharp rise of the configuration pressure and hence
the mixture pressure ppix = ap+&p at the rigid wall. This mix-
ture pressure was compared to the experimental data from the
pressure transducer (see Fig. 10). Also the particles layer as a
whole was compressed, the interface boundary shifted to the right.
At t ~ 0.14ms a CW reflected from the wall and started moving to-
wards the interfacial boundary (see Fig. 9b). At this time the solid
phase volume fraction began decreasing gradually near the wall
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Fig. 7. Comparison of the predicted (solid lines) and the experimental (Roguet
et al., 1998) (dots) pressure curves on three transducers: green color- transducer
No. 1, blue color- transducer No. 2, red color- transducer No. 3.

and it brought about the steady decline of the p.,; (see Fig. 10).
At t ~ 0.22 ms the CW reflected from the interfacial boundary and
moved towards the wall while the volume fraction of the solid
phase continued to decrease near the wall. The interface bound-
ary changed the direction of its motion. Starting from t ~ 0.3 ms
the solid phase volume fraction became less than &4 near the
wall, intergranular pressure did not work any longer (8 = 0) and,
according to the equilibrium condition (2), p = p (see Fig. 10).

We interpreted the experimental data from (Gelfand et al.,
1989) as an oscillating curve with a pronounced first peak, which
was characterized by specific values of its amplitude and width.
The experimental curve also reached a certain average value over
time. Predicted solid phase pressure as well as pp,;x were charac-
terized by the first jump associated with the arrival of the CW. The
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difference in the amplitude of this jump was approximately 15%
in comparison with the experimental value. The experimental and
predicted width of the peak correlated reasonably. There was also
a correspondence in the level which all pressure curves eventually
reached. At the same time the model with stiff pressure relaxation
with considered parameters did not provide the oscillations after
the first pressure peak. Such oscillations are visible on the exper-
imental curve. So we continued the parametric study of the solid
phase EOS and intergranular stresses model parameters influence
on the simulation results.

Polystyrene at pressures of the order of GPa is described by
the Mie-Gruneisen EOS (Khishchenko et al., 1996), the longitudinal
speed of sound in this material is about 2350 m/s (Handbook of
Chemistry and Physics, 2005). For the used stiffened gas EOS, for
the solid phase such speed of sound was obtained for the parame-
ters 7 = 2.5, T ~ 2.6 - 10° Pa. Parameters (19) provided the speed
of sound 485 m/s under the normal conditions. However, Fig. 11
demonstrates that the value of 7y influenced the pressure curve
under the layer insignificantly. The greatest effect here was the sig-
nificant decrease of the integration time step (12). Similar effects
were observed in (Utkin, 2017). Weak dependence of the results on
the EOS parameters of the solid phase was determined by the fact
that polystyrene was almost incompressible within this problem.
However, nominal compressibility of both phases is an important
feature of the considered BN model that ensures its hyperbolicity.

An increase of parameter &;; above an initial value of the solid
phase volume fraction in the layer of particles &g led to a later on-
set of the configuration pressure. In this case, the pressure of the
solid phase increased smoothly near the wall, not abruptly in con-
trast with the experiment (see Fig. 12). Volume fraction of the solid
phase increased gradually at the free boundary of the layer, until
it exceeded the threshold value & . After that a CW propagated
through the layer of particles, and this process was accompanied
by an increase in pressure near the wall. The pressure rise was
sharper for the greater values of &;. The amplitude of the pres-
sure peak also increased. Simulation with & less than &y caused
the decrease of the amplitude of the pressure peak and the in-
crease of its width. Such value of & implied the existence of the
initial intergranular stress not connected with the impact of the
SW. This assumption was considered to be non-physical in the an-
alyzed problem.

Polystyrene particles layer

—0.48, p=1060 <&
m’
T 4 /
0.2 mm /
Shock wave, M = 1.36 Q Q Q Q ;
O O«
'::> 3 Pressure
transducer
O, 07
O -0
Inflow Air under normal Q Q 7
conditions ’d
7
I I
350 mm : 20 mm !
- > oo | >
0 Xt Xr a

Fig. 8. Schematic of the problem of a SW - particles layer interaction (Gelfand et al., 1989).
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Fig. 9. Predicted spatial profiles of the solid phase volume fraction, solid phase pressure, gas phase pressure and configuration pressure at the successive time moments.

The case of reversible loading-unloading process; @ = 0.48, a = 10° J/kg, n = 1.02.

Variation of parameter a influenced the maximum pressure
near the wall insignificantly. However, it influenced the width of
the pressure peak greatly (see Fig. 13). The greater configuration
pressure led to the sharper rise of pressure at the moment of ar-
rival of the CW to the wall and to the less gradual decrease of
pressure when the CW reflected from the wall. Fig. 14 illustrates

1

qualitatively different case that occurred at the highest value of
a=5-10°]/kg. The first pressure peak did not differ from those
disscucced above in princliple. However, at about 0.5 ms the sec-
ondary peak occurred. The jump of & behind the initial CW front
appeared to be smaller with the increase of a. It constituted about
1073 for a = 5 - 10° J/kg in contrast to about 6-103 for a = 10° J/kg
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Fig. 10. Comparison of the pressure curves on the wall under the particles layer;
Qrir = 0.48, a = 10° J/kg, n = 1.02. The case of reversible loading-unloading process.
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Fig. 11. Effect of parameter 7y 0N Ppix; @aic = 0.48, a = 10° J/kg, n = 1.02. The case
of reversible loading-unloading process.

(see Fig. 9a). Therefore, during the whole process & balanced near
the level of &, (see & distribution in Fig. 9c at the time of 0.36
ms as a qualitative example) and the mechanism of the second
peak formation was connected with the accidental local rise of &
somewhere inside the layer up to the &, value. The high value
of configuration pressure then led to the new CWs propagation in
both directions to the wall and interface boundary.

Parameter n in the range 1+ 1076 <n < 1.1 did not affect the
width or the amplitude of the pressure peak significantly, as well
as the mechanism of CW propagation in the layer.

5.3. Results: irreversible loading-unloading of the layer

Since a true oscillatory nature of the pressure curve on the wall
under the layer was not obtained in the “reversible” simulations
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Fig. 12. Effect of parameter G On pmix; @ = 3 - 10 J/kg, n = 1.02. The case of re-
versible loading-unloading process.

o — a=10* J/kg
81 , ——— a=3-10" J/kg

] &% — a=10" J/kg

l Gelfand et al., 1989
6_
4_
2_

0 0.2 0.4 0.6 0.8 1

f, ms

Fig. 13. Effect of parameter a on piy; Ggic = 0.48, n = 1.02. The case of reversible
loading-unloading process.

in the previous Section, we proceeded with the irreversible model
of a granular layer compaction. In (Saurel et al., 2010) a switch be-
tween a stiff pressure relaxation for p > p+ 8 and F = 0 otherwise
was proposed. We used a finite compaction rate F with compaction
viscosity 1 = 10*Pa s instead of F = 0.

The same parameters Q. = 0.48, a = 10°J/kg, n = 1.02 were
used as in the basic reversible simulation (see Fig. 9, Fig. 10).
Fig. 15 shows that irreversible compaction model provided dif-
ferent shape of the main pressure peak. It became to resemble
more the experimental observations. More importantly, irreversible
compaction provided oscillations of the pressure curve. The choice
F=0in case p<p+ B led to the non-damping pressure oscilla-
tions so we added compaction viscosity to consideration. Spatial
distributions in Fig. 16 clarify the mechanism of oscillations for-
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Fig. 15. Predicted wall pressure history for d@u; = 0.48, a=10°]/kg, n=1.02 in
comparison with the experiment. Irreversible compaction case.

mation. The main peak was formed in the same manner as in the
reversible case, see Fig. 9. However, after the reflection of a CW
from the wall the solid phase volume fraction near the wall did
not decrease as fast as in the reversible case. Consequently, con-
figuration pressure also remained nearly constant near the wall. In
such situation, the sources of oscillations are the pressure waves in
the solid phase that travel between the wall and the free boundary
of the layer with gradual damping.

6. Nowadays

The models based on the BN equations and on the kinetic the-
ory of granular media (KTGM) (Gidaspow, 1994) are among the
most developed and widespread for the simulations of high-speed
dense flows of two-phase media. Applied to the considered prob-
lem, these two classes of equations have the following difference
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(Houim and Oran, 2016). In the approach based on the BN equa-
tions, one of the equations of the governing system is the com-
paction equation, the first equation of system (1), which has the
following form without the right-hand side term:

da -0
at "V ox

It should be reminded that the BN model implies the compress-
ibility of both the gas and the solid phases. KTGM contains differ-
ent equation for & evolution considering the particles phase in-
compressible:
00y g

The mathematical structure of Eqgs. (20) and (21) is differ-
ent. The Eq. (20) reflects the non-conservative nature of the BN
equations. Therefore, different mechanisms of CWs propagation
are inherent in the BN and KTGM models. It was supposed in
(Houim and Oran, 2016) that the BN equations are poorly suited
for describing waves in granular media and are better suited for
describing mixtures with particles volume fraction close to packing
limit. Now we have an opportunity to compare simulation results
for the same problem obtained using the models that explicitly
contain either Eq. (20) (author’s simulations) or (21). Eq. (21) was
explicitly included in the model (Kutushev and Rudakov, 1993)
in which the same experiment (Gelfand et al., 1989) was con-
sidered. It should be noted that intergranular stresses model in
(Kutushev and Rudakov, 1993) took into account nonlinear-elastic
effects during loading-unloading of the particles.

In simulation (Kutushev and Rudakov, 1993), oscillations were
obtained on the pressure curve on the wall under the layer (see
Fig. 10). However, the first pressure peak was described less pre-
cisely quantitatively (the differences in the amplitude and the
width reaches 50%) in comparison with the author’s simulations.
In addition, the pressure curve reached the level different from the
experiment. The oscillations following the first pressure peak were
described not quite right when compared to the experiment be-
cause the amplitude of the following peaks was only slightly less
than of the first computed one. The explanation of the pressure
oscillations was the following. Gas filtration provided constantly
rising pressure under the layer. Separate “splashes” were deter-
mined by the compression and rarefaction of the solid skeleton
of the layer. The plot of configuration pressure in (Kutushev and
Rudakov, 1993) shows that the “splashes” corresponded to the mo-
ments when it was not zero on the wall. The term “splash” from
(Kutushev and Rudakov, 1993) emphasized that qualitatively the
character of secondary pulsations was similar to Fig. 14, not Fig. 15.
Separate peaks were superimposed on the monotonically increas-
ing curve, as it happened in Fig. 14. This is especially noticeable for
the third peak, see the orange curve in Fig. 10. Thus, although we
managed to obtain similar regime in our reversible BN simulations
by means of variation of parameters in (2) - (6), commonly real-
ized flow field from Fig. 9 do not give a premise for oscillations oc-
currence. In contrast, irreversible compaction model contains oscil-
lations as its essential part according to the mechanism described
in Section 5.3 but this mechanism is indeed different from that re-
vealed in (Kutushev and Rudakov, 1993).

The essence of the experiment considered in (Gelfand et al.,
1989) was later repeated in the work (Britan et al., 1997) al-
ready discussed in the Introduction. The authors in (Britan et al.,
1997) used an improved experimental setup and investigated dif-
ferent mixtures of particles. These experiments were simulated in
(Gubaidullin et al., 2003), where a two-speed model of a saturated
porous medium with two stress tensors was used (Nugmatulin,
1990). In this model, there is no explicit expression for intergranu-
lar stresses with a switch upon reaching a certain volume fraction

—0. (20)

(21)
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Fig. 16. Predicted spatial profiles of the solid phase volume fraction, solid phase pressure, gas phase pressure and configuration pressure at the successive time moments.
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(a)

(b)

(©)

Fig. 17. The schematic of the Riemann problem solution of the BN system of equations in the subsonic case (Schwendeman et al., 2006). General case when both phases
exist to the left and to the right from the discontinuity. All notations are standard, see (Toro, 2009).

X

»
>

Fig. 18. The schematic of the Riemann problem solution of the BN system of equa-
tions in case of the absence of the solid phase to the right from the solid contact.

of particles. In simulations, the experimental statements were con-
sidered for the layers with the thicknesses from 10 mm to 40 mm,
porosities from 0.389 to 0.456, particle diameters from 0.225 mm
to 1.665 mm and incident SW Mach number about 1.32. In the ma-
jority of simulations, the predicted pressure curves did not demon-
strate oscillations after the first peak although the correspondent
experimental data did. At the same time there were several sim-
ulations with damping oscillations that qualitatively differed from
oscillations in (Kutushev and Rudakov, 1993) and were similar to
Fig. 15. These were not the additional solid pressure peaks super-
imposed on the gas pressure but sinusoidal pulsations. The neces-
sity of taking into account plastic phenomena even at small cyclic
loads was indicated as one of the factors affecting the difference
between the predicted and experimental data in (Gubaidullin et al.,
2003). So in fact the authors spoke in favor of using irreversible
compaction model.

7. Conclusions

1. Thus, we continued our research (Utkin, 2019) on the features
of the application of the Godunov method for the solution of
the BN equations applied to practical problems in the field of
two-phase granular media flows. This time we have developed
a robust computational algorithm that allows solving problems
with explicit interphase boundaries and accounting for the ef-
fects of intergranular stresses in the solid phase. The algorithm
was based on the Godunov method (Schwendeman et al., 2006)
- in a sense, the most general and accurate possible method
for the Riemann problem solution. The algorithm also includes
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the pressure relaxation procedure which goes back to the works
of R. Saurel and coauthors. Two approaches for the pressure
relaxation were considered. The first one corresponds to the
stiff local interfacial boundary equilibrium and so the reversible
loading-unloading of the particles layer. The second approach
implements irreversible compaction of the particles. The com-
putational algorithm of the Godunov method was described in
detail, including the analysis of all cases of the solid phase vol-
ume fraction ratio in adjacent computational cells. Computer
C++ code (Computer Code for the Godunov Solver, 2020) is
available that implements the Godunov solver for the BN equa-
tions in case of presence of a solid phase volume fraction gap in
the neighbor cells. Pressure relaxation procedure taking into ac-
count intergranular stresses in the solid phase of particles was
also descried in detail.

2. The developed algorithm was used to simulate an experiment
(Gelfand et al., 1989) devoted to the normal incidence of a SW
on a dense layer of particles near a rigid wall. As in many other
studies the first peak on the pressure curve under the layer of
particles was associated with the propagation of a CW through
the layer and its subsequent reflection from the wall. A para-
metric study of the influence of parameters in the intergran-
ular stresses model (Saurel et al, 2010) was carried out. The
obtained set of parameters provided a difference of 15% in the
value of the peak amplitude in the simulation and the exper-
iment. However, the model of reversible loading-unloading of
the layer did not provide oscillations of the pressure curve. On
the contrary, irreversible compaction model contains such os-
cillations also observed in the experiment as an essential part.
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Appendix. Finding Gas and Solid Pressure at the Solid Contact

Both phases are present in the neighbor cells

Fig. 2a represents the case where two phases are present in the neighbor cells meaning that each of the parameters o'c,.”+ and &' are
greater than &g, ps in both cells i and (i 4 1). For the states U; and Ug from different sides of the discontinuity in this case the following
system of equations is solved:

N(p1, p2, p1, P2) =0, (22)
Ny =1, -1y,
Ny = ap (2270 Av, — ay Ay,
2 OlR(I-HJrJTo) 2 -0 1 ifV1 - vl, (23)

N3 = GirP, + 0trD2 " 1Py — o p1 + o p1 AV Av,
Ny = (Pa+mo)y (P1+7Tn) r + %(AU% _ Av%) _ (m+7)y

¥-Dp1 \p2+mo y=-Dpr >’
Ny =1, -1y, :
+ /v
Ny = ar AV, —Ol]_(%) Avy,

_ _ ifv 1. 24
N3 =P, + Qrp2 — O Py — AL P71 + CRO2 AV A, 1= 24)

_ (ptm)y o1 2 A12) _ (o1 [ patme\ VY
Ny = % + 3 (Av) — Avg) - BERE (B2)

where Avy =1 — Uy, Avy =1, — V5, Av =1, —v;. The system (23) corresponds to the configuration of waves described in Fig. 17b while
the system (24) agrees with the Fig. 17c. The subscript “0” on Fig. 17b, c denotes the intermediate state between the solid and gas contacts.
The subscripts 1 and 2 denote the states to the left and to the right of the solid contact.

The relations connected density and velocity with the pressure in gas phase:

V1 = —F(p1), p1 = GL(P1), V2 = Vg + Fr(P2), p2 = Gr(P2). (25)
The analogous relations for the solid phase:
Uy =0, — FL(P1). 1 =G1(P1). V2 = Vg + Fr(Dy). P2 = Gr(P2). (26)
where:
12 .
Fs(p) = (p— Ps)[m] " ifp > ps (shockwave),
= (yzfsl) [(ﬁiﬁn)(yq)/zy - l], if p < ps (rarefaction wave),

(v =1)(p+70)+(y +1) (ps+70)

ps(giﬁg) "V 'ifp < ps (rarefaction wave),

ps[(V—1)(Ps+ﬂu)+()/+1)(P+7To)]’ if p > ps (shock wave),
Gs(p) =

with:

-1
As = ﬁ Bs = %(Psﬂfo), as=\/@,s:L,R.

The expressions F(p) and Gs(p) are the same as written above with adding upper bar for all variables.
The solution of the algebraic non-linear system of Eq. (22) using Newton method demands the construction of the Jacobian. Its com-
ponents for the system (23) are:

Ny _o N o oMy _ dFy 0Ny _ dFy

ap1 " dp2 "dp;  dpy’ 9p,  dpy’

N, R (Pz +7To>]/y dR,

A Ay + o —=

ap1 Y (pi+70) \p1+ 70 2T dp,

9N, (Pz +no>W Avy diz \ 9N, dF, 9N, (Pz +rro>”V dFg
7:(112 -‘ri ,T:_QLT,T:_(XR =
0p; P+ 7o y(p2+7mo) dpa )’ 9D dp,’ 9p, pi+m/  dp,
8N3 dGL dFL

— =—q+ o —AVNAV+ Av; — Av)——,

ap: Lo A o1 (Avq )dp1

ON; dfy 0N  _ dF, ONs _

p, RPN g gp, T T A AV S g, =k

Ny _ (P2+7T0)(P1+7T0>W 1 rde v LI PN
op1 (v —Dp1 \p2+ 70 (P +m)  p1dp (¥ —=Dp1 \ pr1dp: dpy’
8N4 1 (pl-i-ﬂo)]/y dFR 8N4 dFL 8N4 dFR

- = — AU*,T:_ UT,T:_AUT.

dp2 ~ p1\py + 70 *dp,” 9P "dp,” P, *dp,
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The Jacobian components for the system (24) are the following:

W o 0N o O _ dFy 0Ny _ dFy
dpr " dp, dp; dp,’ 9p, dpy’
BNZ (p1 +7T0>1/V dFL 1 8N2 o <p1 +7T()>1/y dFR BNZ <p1 +7T0)l/y dFL 8N2
7:O(L - — ———— s & — = AU]—FaRi,T:—aL s A=
ap1 P2+ 7o dpi1  y(p1+m) ) 9p2 ¥ (p2+70) \p2+ 7o dp,’ 9P, p2+m/ dp;’ 9P,
dFg
T
ON; dF,  9N; dGg dFy
—— = = + AR AV —, —— = QR + CRAVAV— + AV + Avy)—r,
p; L+ oR02 2dp,’ 3p, R T RO2( Z)dpz
8N3 — 8N3 — dFR
= = —0[, =— = 0g — RO AV—,
9P " 9D, R ORO2 dp,

0Ny 1 (Pz-HTo)l/V df,
= =—— Avy—,
ap; 02\ D1+ o dp;

My _ ¥y ¥y G patmo\ 1V _
3, — =D T -DpZ 9p [(191 +7T0)(P1+7To) (P2 +7T0)]+

+AY, M (P14T0) (P2+ﬂ0)1/y’

apy (¥ =1)(p2+70)p2 \ p1+770
P, 'dp,” 9p, 2dp,”

This case was realized in (Computer Code for the Godunov Solver, 2020).

The solid phase is present only to the left from the solid contact

Figs. 2b and 18 represent the case when & is very small to the right from the solid contact. In this special case the following system
of equations is solved:

N(p1, p2, p1) =0,

~ 1/y
_ [ p2+T0o
N; = (7P1+ﬂo) 81}[_ — 0 Ay,

Ny = pa — @By — oup1 + o1 Avy Av, ifvy > 1y, (27)
N, — (Patmo)y (prmo\1VY 1 2 _ Aq2) _ (Ptmo)y
Ny = G (B570) 7 + 3 (0w — Avg) — B

~ 1
N] = SUL _aL(erJTo) /yAl/],

. o D2+ . _

Ny = pp — 01Dy — 1P + Arp2 AL A, : ifv; <y, (28)
N (tmy 1 2 _ A12) _ (P14m0)y (patmo \ VY
Ns =55 + 2(8“ Avl) =Dz (P1+7Tn) ’

where §v; = v, — 17. These systems of equations are obtained from (23) and (24) with the help of formal substitution &; — 0 and vy — 1.
The Jacobian components for the system (27) are the following:

oM (PZ‘HTO)W/ vy di, 9N, <P2+7T0>1/V S <p2+7ro)1/” dF;
Fo-=— o, o = -,
ap1 pi+mo/ v (p1+mo) dpi’ dp2  \p1+7m/ Y(P2+70) \p1+7m/ dp;
oN; (pz+no)”ydj_a df;
9p1 \p1+7mo dp Ydpy
oN, dF dG; N, dR
— = —0 Ay — AV)+a | —ANAV-1 ), —= =1+ a;01Av1—,
ap, — dps 1P1(Avy ) L<dp1 1 303 LO1 " dp,
N, dF,
= = =0 + U 01 AV 5=,
9P L LP1 1dP1
Wy +p\ /Y1 +710 \ /Y y (p2+70) dG
875 - (J;_L)é)l (Z;Z‘;) - (§;+;3) (y—zl)polz ﬁ"'
D1+ )4 )4 F
+ Do dpr ~ one T AVIG
f“ﬂs_i(wﬂo)w sy GB s\ dF
ap2  p1\p2+mo Ydp,” ap, " dp,

The Jacobian components for the system (28) are the following:

oMy <P1 +7To)”V df, Avy oN;  dFg (m + no)W Av,
— =0 - — o i
ap P2 + 7o dpi  y(p1+ 7o) P2+ 7o Y (P2 + o)

Cp dpe
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oN, dR <P1 +7T0>1/V
— = = 1—C¥L s
dp;  dpy P2 + 7o

oN, dR, oN, dGg dR oN,  _ dF,
= -0+ 0)—0V, —— =14+ =8V AV+ 03— (AV +01}), === = —01 + 03— AUV,
ap; L P dpi " 9ps dpy " P2 dpz( L) P v dp,
N5 1 <p2+n0>1/y dR,
=—— Avy—,
ap P1\P1+ 7o dp;
N, 14 (P2 + o)y dGg dRg P2+ o\ V7! 1 dGr 0N, dF;
= - 2—+8UL——( ) ——, e = AV——.
dp2 (v —-Dp2 (¥ —-1)p2 dp; dp,  \p1+mo (y —Dp2dpy” 9P, dp

The solid phase is present only to the right from the solid contact
The system of equations for the special case of absence of the solid phase to the left from the solid contact is the following:

N(p1, p2. p2) =0,

~ 1
N] = (XR(p2+n0) /VAUZ — CSUR,

- __"\P1t7o
Ny = @grPy + arpP2 — p1 + P10VRAD, if v; > 7y, (29)
R, — r(pi+70) (((prtme\ /Y1 1 2 2
Ns = 5200 ((plmg) -1)+ Z(AU2 — Sk )
~ 1/y
~ I\EiaRsz —SVR(%) ,
Ny = 0rp, + QP2 — P1 + QrO2 AV, AV, ifv; <7, (30)
N y(patm) potme\ /Y1 1 2 2
Ns = 52055, (1 - (p?+ng) ) 2 (AUZ - SUR)’

where Svg = 11 — 5. The Jacobian components for the system (29) are the following:

8N1 o (pz-i—ﬂo)”y Avy dE; 8N1 o (pz-i—ﬂo)]“/( Avy dFR>
—_ R )

+ , =
y(p1+mo) dpi’ dp2
M (g (2t o) d

apy R D1+ 7o dpy’

oy
ap1

P — + _
ap; "\ pi +m0 p1 + 7o y(p2+ 1)  dps

B dR, dG, oN, dir N, _
=-1 +/01(SVRE(5UR - Av) +8vRAvE, ap, = Ok +p18vxd—pz, 7, - O — P1AV—

N _ 1 (p1+n0>1/y-1_y L Y1t m0) dGy 1_(p1+7-[0)1/1/—1 o dB
apr (v —Dpr \\p2+ 70 (v —1)p? dp P2 + 7o “dp,

o 1y o _
3N3 1 <p1+7'[0) v dFR 8N3 AUdFR

Ops ~ p1\pa+7o Rdp,' 9p, ~  dp,
The Jacobian components for the system (30) are the following:
N, (pl +7TO>W df SUR N, <p1 +710)W AV, dR
_—= _—— ), — = +Oog—,
dp1 \p2+ 7o dpr  y(pi+m) ) 9p2  \pa+m/  y(P2+mo) dp,
N <p1+no>”y o) 4R
0p2  \\p2+mo *)dp,
N, dF, oN, dGg dRy
= -1+ arp2Avy—, =gl 1+ —ALAV+ p— (AV+ AVy) |,
ap: RO2 2dp,’ 3p, R p, "2 'Ozdpz( 2)
aNz - FR
== =0g — QR0 AV—,
35, R RP2 p,
N5 1 <p2+n0>1/y df,
=—-— SVr—,
aps P2 \P1+ 7o dpi
ON; y Y (P2 + 7o) 9Gg (P2+7T0>1/V’1 1 (192+7T0)]/y’l dfy
= a— 1| - +Avy——,
dp2 (v —Dp2 (v —1)p2 dp2| \p1+ 70 (¥ —Dp2\p1 +mo dp>
N, dFk
= = —AV—.
0p2 dp>
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