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a b s t r a c t 

The work is devoted to the numerical simulation of the known problem of a normally incident shock 

wave – dense layer of particles interaction and the phenomenon of the pressure rise on the wall un- 

der the layer. The novelty of the work is in the numerical approach which is based on the Godunov 

solver for the Baer-Nunziato equations and the pressure relaxation procedure which takes into account 

intergranular stresses in the solid phase. The algorithm based on the exact solution of the Riemann prob- 

lem provides a low numerical dissipation of the solid contacts and is robust at the explicit interfacial 

boundaries. The algorithm was described in detail; the source code of the Godunov solver for the Baer- 

Nunziato equations was provided. The full scale experiment of a shock wave – particles layer interaction 

was simulated. The shape of the pressure curve, obtained on the wall under the particles layer, was ex- 

plained from the point of view of ongoing wave processes in the layer. A quantitative comparison of the 

experimental and simulated pressure curves was carried out. Studies of the influence of parameters in 

the intergranular stresses model on simulation results as well as reversible or irreversible character of 

loading-unloading process were conducted. Obtained results were compared to the published simulation 

results by the other authors based on the R.I. Nigmatulin models. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Interaction of an air shock wave (SW) with an interface bound- 

ry of two-phase gas-particles medium has been extensively stud- 

ed over the last several decades. One of the major focuses of 

his study has been the attenuation of SWs by granular filters. 

 range of experimental and numerical works has been carried 

ut studying propagation of a SW in a channel and its interac- 

ion with a granular or porous material located near the end wall 

f the channel. It was experimentally indicated in ( Gelfand et al., 

975 ) that the peak pressure registered by a transducer on the 

all behind polyurethane foam was significantly higher than pres- 

ure detected under the normal reflection of a SW of the same 

ach number from the rigid wall. Although the experimental re- 

earch in ( Skews, 1991 ) was primarily focused on the dynamics 

f waves reflected from the interfacial boundary back into the 

as, the gradual increase of the back wall pressure was also in- 
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icated. In ( Baer, 1992 ), the Baer-Nunziato (BN) model ( Baer and 

unziato, 1986 ) was applied in attempt to describe this compli- 

ated physical process numerically and simulate the experiments 

 Skews, 1991 ). It was stated that after the shock hit the foam a

ompaction wave (CW) occurred in the foam as gas permeated 

nto the porous material imparting momentum to the solid phase. 

ater this phenomenon was investigated in a number of experi- 

ental ( Skews et al., 1993 ), ( Ben-Dor et al., 1994 ), ( Yasuhara et al.,

996 ), ( Seitz and Skews, 2006 ) and theoretical ( Olim et al., 1994 ),

 Mazor et al., 1994 ) studies. 

Our interest was in the development of approaches to numeri- 

al simulation of the interaction of a SW with a layer of particles 

n an impenetrable surface using the BN model. Apparently, after 

 Baer, 1992 ) the most significant progress in this field took place 

n ( Saurel and Abgrall, 1999 ) and numerous subsequent works of 

hese authors, see a review in ( Utkin, 2019 ). The key advantage 

f the BN model and its possible extensions in comparison with 

ther two-phase models is the hyperbolicity of the BN equations. 

lthough the defining system of equations is hyperbolic, it can not 

e written in the conservative form due to the so-called nozzling 

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103718
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2021.103718&domain=pdf
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erms in the right hand side of the system that are associated with 

he local gradient of the volume fraction of the solid phase. A cor- 

ect approximation of these terms is one of the difficulties that 

rise while solving the BN system of equations. However, the hy- 

erbolicity of the BN equations has led to an extensive work on 

he development of the numerical schemes for its solution. The 

LL ( Saurel and Abgrall, 1999 ), HLLC ( Tokareva and Toro, 2010 ),

 Furfaro, Saurel, 2015 ), ( Lochon et al., 2016 ), ( Hennessey et al.,

020 ), HLLEM ( Dumbser, Balsara, 2016 ), AUSM ( Tokareva, Toro, 

016 ), Godunov ( Schwendeman et al., 2006 ), Rusanov ( Saurel and 

bgrall, 1999 ), ( Menshov, Serezhkin, 2018 ) and a number of other 

chemes for the solution of the BN equations were developed. 

eanwhile, the efficiency of many of the proposed schemes was 

hown only on the academic test cases like the Riemann prob- 

em. Usage of these schemes for solution of practical problems 

s often a challenging issue due to the special cases as the van- 

shing phase case, see the terminology in ( Schwendeman et al., 

006 ), when the solid phase vanishes in some regions of the 

omputational domain. For example, the original HLLC method 

 Tokareva and Toro, 2010 ) did not address the vanishing phase case 

nd it was improved later in ( Lochon et al., 2016 ) and applied

or the simulation of a shock-bubble interaction and an underwa- 

er explosion. The Godunov method ( Schwendeman et al., 2006 ) 

s in the similar status. Although the vanishing phase case was 

escribed in ( Schwendeman et al., 2006 ), a robust numerical al- 

orithm of the Godunov method for all solid phase volume frac- 

ion cases was not presented. As well as its application to the real 

ife problems with the exception of the simulations of deflagra- 

ion and detonation waves initiation and propagation in the het- 

rogeneous explosives ( Schwendeman et al., 2008 ). At the same 

ime, the Godunov method is a physically relevant approach for 

olution of the BN equations with the minimal number of addi- 

ional assumptions or simplifications. In ( Fraysse et al., 2016 ) the 

omparison of different numerical methods for solution of the BN 

quations was carried out on a set of test Riemann problems. The 

odunov ( Schwendeman et al., 2006 ) and the HLLC ( Tokareva and 

oro, 2010 ) methods were noticed as the most accurate for all con- 

idered test cases. However, test cases in ( Fraysse et al., 2016 ) also

id not contain problems with the vanishing solid phase. Compu- 

ational cost of the Godunov method was considered to be one 

f the major disadvantages. But in contrast to the HLLC method 

or the Euler equations, the HLLC method for the BN equations 

 Tokareva and Toro, 2010 ) also demands the iterative solution of 

he system of non-linear algebraic equations. The Godunov method 

s of our interest in this work due to its distinctive properties 

mong all Riemann solvers. 

Previously we considered the problem of interaction of a 

W with a moving cloud of particles with free boundaries in 

 Utkin, 2017 ), ( Utkin, 2019 ). The initial volume fraction of par-

icles corresponded to the dense column in the experiments 

 Rogue et al., 1998 ). It was possible to reproduce the features of

he reflected and transmitted waves and the dynamics of the cloud 

ovement correctly without intergranular stresses in the solid 

hase taken into account due to the free boundaries of the cloud 

nd its fast dispersion. Nevertheless, this factor was taken into con- 

ideration in ( Saurel et al., 2017 ). Intergranular stresses are impor- 

ant in the problems with the underlying surface when a traveling 

W interacts with a dust layer, see ( Fan et al., 2007 ), for instance.

he first and the main goal of this work was the development of 

he numerical algorithm for the solution of the BN system of equa- 

ions using the Godunov method ( Schwendeman et al., 2006 ) tak- 

ng into account intergranular stresses in the pressure relaxation 

rocedure. The algorithm has to be robust for the simulations with 

xplicit interfacial boundaries. 

Moreover, we intended to examine the problem of interaction 

f a SW with a particles bed located near the rigid wall described 
2 
n ( Gelfand et al., 1989 ). In the recent study ( Sugiyama et al.,

021 ), a similar mathematical model (BN-type equations and in- 

ergranular stresses model from ( Saurel et al., 2010 )) was used 

or the three-dimensional simulations of a blast wave interac- 

ion with a layer of glass particles. The HLLC ( Furfaro, Saurel, 

015 ) numerical method was used. Apparently, the approach of 

 Furfaro, Saurel, 2015 ) is more computationally efficient than 

 Tokareva and Toro, 2010 ) and the subsequent developments 

 Lochon et al., 2016 ), ( Hennessey et al., 2020 ), although this issue

as not analyzed, for example, in ( Fraysse et al., 2016 ). However, 

he HLLC method ( Furfaro, Saurel, 2015 ) is also not so widespread 

n two-phase simulations. One of the possible reasons is that the 

LLC method ( Furfaro, Saurel, 2015 ) is formulated in the ideology 

f discrete element method ( Abgrall, Saurel, 2003 ) that differs from 

he general finite volume method notations. 

In ( Britan et al., 1997 ), the process of SW – dense particles layer

nteraction was studied experimentally and numerically. It was in- 

icated that the pressure curve near the back wall consisted of 

he initial oscillations connected with the CW propagation and the 

ubsequent steady rise of the pressure during gas filtration. Experi- 

ents ( Britan et al., 1995 ) later simulated in ( Surov, 20 0 0 ) demon-

trated that oscillatory behavior is not inherent in gas-liquid foams 

n contrast to porous medium. If the particles layer length was 

mall, the pressure rise on the wall was provided by the action of 

he CW. The longer the particles layer was, the less was the value 

f the peak pressure. A terminology comment should be made. 

ompaction is an irreversible process which leads to the hysteresis 

henomenon when the granular media is subjected to a loading 

unloading cycle ( Saurel et al., 2010 ). However, if the loads are 

ot very strong in comparison with the plastic limit of the gran- 

lar material, intergranular stresses lead to the reversible process 

f powder loading – unloading process. A wave in which both vol- 

me fraction and density of the solid phase are changed will be 

eferred to as CW in any case. 

It was also stated in ( Kutushev and Rodionov, 1999 ) and 

 Gubaidullin et al., 2003 ) that a filtration wave in gas and a de-

ormation wave in the solid phase could be observed due to a SW 

bed of particles interaction. A deformation wave in the skeleton 

f a porous medium occurred under the influence of such forces as 

he “Archimedes” force ᾱ · ∂ p / ∂x , where ᾱ is the solid phase vol- 

me fraction and p is the gas phase pressure, interfacial friction, 

he gradient of intergranular stress of the solid phase and particles 

nertia. However, the Archimedes force was stated to contribute 

he most to the formation of pressure pulses on the back wall. 

In ( Britan and Ben-Dor, 2006 ), different particles were consid- 

red and it was experimentally shown that there was an optimal 

articles layer length that led to the maximum value of the peak 

ressure on the back wall. This layer length was different for the 

articles with various sizes and densities. It was stated that, in 

ontrast to the high-porosity foams, interaction of waves was not 

o important within the granular samples for the formation of the 

ressure peaks on the back wall. As generally the porosity is far 

ower in the granular materials than in foams, the waves attenuate 

uickly in the sample, so the waves’ interaction contributes most 

o the pressure peaks formation in the rather short granular beds. 

therwise, it is the gas filtration that plays the major role in the 

ncrease of pressure on the back wall as well as such effects as the 

ry friction, rotation of particles and reduction of the porous space. 

owever, provided the incident SW is rather strong, it is the com- 

action that makes the greatest contribution to the pressure in- 

rease. It explains why numerical models that do not account for 

he gas filtration are still able to describe the experimental results 

or the strong SWs with the good agreement (see, for instance, the 

pplication of the BN model in ( Baer, 1988 )). So, the second goal

f this work is the numerical study of the qualitative and quantita- 

ive characteristics of the SW – particles layer interaction ( Gelfand 
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t al., 1989 ) (the phenomenon of the pressure rise on the wall un- 

er the layer, the amplitude of the main pressure peak, the oscil- 

atory nature of the pressure curve) using the BN model in com- 

arison with the simulations from ( Kutushev and Rudakov, 1993 ) 

n which the R.I. Nigmatulin model ( Nigmatulin, 1990 ) was used. 

This paper is organized as follows. Section 2 outlines the defin- 

ng system of equations. In Section 3 , the numerical algorithm used 

n this study is presented in detail. Attention is paid both to the 

yperbolic step of the algorithm ( Section 3.1 ) also clarified in the 

ppendix and to the pressure relaxation step taking into account 

ntergranular stresses ( Section 3.2 ). In Section 4 . two verification 

roblems are considered. Section 4.1 addresses the Riemann prob- 

em for the reduced BN system of equations. In Section 4.2 . the 

roblem of SW – particles cloud interaction ( Rogue et al., 1998 ) is 

xamined. Section 5 covers simulations of the experiment ( Gelfand 

t al., 1989 ) on a SW – particles layer on the wall interaction in-

luding both reversible ( Section 5.2 ) and irreversible ( Section 5.3 ) 

odels. In Section 6 . we discuss obtained results in the scope of 

xisting simulations of SW – particles layer interaction problem. 

he conclusions are drawn in the final Section. 

. Mathematical model 

The mathematical model was based on the BN system of equa- 

ions ( Baer and Nunziato, 1986 ) with modifications and improve- 

ents from ( Bdzil et al., 1999 ), ( Saurel and Abgrall, 1999 ) and

 Saurel et al., 2010 ): 

 t + f x ( u ) = h ( u ) ̄αx + p + s , (1) 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ᾱ
ᾱρ̄
ᾱρ̄v̄ 
ᾱρ̄Ē 

αρ
αρv 
αρE 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

ᾱρ̄v̄ 
ᾱ( ̄ρv̄ 2 + p̄ ) 

ᾱv̄ ( ̄ρĒ + p̄ ) 

αρv 
α(ρv 2 + p) 

αv (ρE + p) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, h = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−˜ v 
0 

˜ p 

˜ p ̃ v 
0 

− ˜ p 

− ˜ p ̃ v 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, p = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

F 

0 

0 

−( ̃  p + β) F 

0 

0 

˜ p F 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

s = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

− f 

− f · ˜ v 
0 

f 

f · ˜ v 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

¯ + α = 1 , 

¯
 = 

v̄ 2 

2 
+ ̄e ( ̄p , ρ̄) = 

v̄ 2 

2 
+ 

p̄ + γ̄ π̄0 

ρ̄( ̄γ − 1 ) 
, E = 

v 2 

2 
+ e (p, ρ) = 

v 2 

2 
+ 

p + γπ0 

ρ( γ − 1 ) 
, 

 = 

αᾱ

μc 
( ̄p − p − β) . 

Here t is the time, x is the space coordinate, α is the volume 

raction, ρ is the true density, v is the velocity, p is the pressure, 

is the specific total energy, e is the specific internal energy, γ̄
nd π̄0 are the parameters in the stiffened gas equation of state 

EOS) for the solid phase of particles, γ and π0 are the analogues 

arameters for the gas phase EOS, μc is the coefficient of com- 

action viscosity, β is the configuration pressure or intergranular 

tress. The bar superscript was used to indicate solid phase quan- 

ities. In simulations, the ideal gas EOS for the gas phase was used 

ith π0 = 0 . However, we left this parameter in the formulas of 

he numerical algorithm further so that it is valid for other prob- 

ems. For example, stiffened gas EOS for both phases is necessary 

or the simulation of high-speed impact of two metal plates using 

wo-fluid approach ( Utkin and Fortova, 2018 ). 
3 
Nozzling term h (u ) ̄αx is the specific feature of the BN system 

f equations. Velocity ˜ v and pressure ˜ p are interfacial variables. 

hey were chosen as in ( Baer and Nunziato, 1986 ), although other 

ptions were also possible ( Saurel et al., 2010 ), ( Lallemand et al., 

005 ): 

˜ p = p, ̃  v = v̄ . 

Vector p contains pressure relaxation terms. Following 

 Saurel et al., 2010 ), two approaches for the pressure relax- 

tion were considered. The first one corresponds to the stiff local 

nterfacial boundary equilibrium and, consequently, the reversible 

oading-unloading of the particles layer. The second approach 

mplies a switch between a stiff relaxation and a compaction with 

 finite rate F and refers to the irreversible compaction. For a 

tiff relaxation the following mechanical equilibrium condition 

t the interfacial boundary is used ( Baer and Nunziato, 1986 ), 

 Saurel et al., 2010 ): 

p̄ = 

˜ p + β, (2) 

= ᾱρ̄
dB 

d ̄α
= −ᾱρ̄ · a · n · ln 

1 − ᾱ

1 − ᾱ0 

(
B ( ̄α) 

a 

) n −1 
n 

, (3) 

 ( α) = 

{
B a ( α) , if αcrit < α < 1 , 

0 , otherwise , 
(4) 

 a ( ̄α) = a [ b 1 ( ̄α) − b 1 ( ̄αcrit ) + b 2 ( ̄α) ] 
n 
, (5) 

 1 ( ̄α) = ( 1 − ᾱ) ln ( 1 − ᾱ) , b 2 ( ̄α) = ( 1 + ln ( 1 − ᾱcrit ) ) ( ̄α − ᾱcrit ) . 

(6) 

Here B ( ̄α) is the potential energy of compaction, a and n are 

he empirical coefficients that characterize a considered two-phase 

edium , ᾱcrit is a threshold value of the solid phase volume frac- 

ion. If ᾱ exceeds ᾱcrit , compaction is enabled and B ( ̄α) becomes 

reater than 0. The model (2) – (6) was developed in ( Saurel et al.,

010 ) after simulation of reversible and irreversible powders com- 

action on the basis of a two-phase one-velocity BN-type ap- 

roach. The values of ᾱcrit , a and n were obtained from the analysis 

f the experimental data on quasi-static compression of different 

owders. The relations, resembling (4) and (5), might be found in 

lder works devoted to the internal ballistics problems ( Koo et al., 

976 ). In those works intergranular stress was used as pressure in 

olid phase of gun powder granules that prevented their excessive 

ompaction during the shot. In ( Favrie and Gavrilyuk, 2013 ) the 

odel ( Saurel et al., 2010 ) was improved in order to take into ac-

ount elastic and plastic deformations simultaneously. The model 

 Saurel et al., 2010 ) was extended to the two-velocity model later 

n ( Saurel et al., 2014 ) and to the model for dilute and dense two-

hase flows ( Saurel et al., 2017 ). The relations (3)– (6) were also 

sed in the work ( McGrath et al., 2016 ). However, the details of 

he numerical algorithm including the treatment of vanishing solid 

hase case were omitted in ( McGrath et al., 2016 ). 

Vector s in (2) took into account source terms. The drag force f

as defined following ( Gidaspow, 1994 ), ( Houim and Oran, 2016 ): 

f = K ( ̄v − v ) , 

 = 

{
0 . 75 C d 

ραα| v −v | 
dα2 . 65 , if α ≥ 0 . 8 , 

150 α2 μvis 

αd 2 
+ 1 . 75 

ρα| v −v | 
d 

, if α < 0 . 8 , 

 d = 

{
24 
αRe 

[
1 + 0 . 15 ( αRe ) 

0 . 687 
]
, if αRe < 10 

3 
, 

0 . 44 , if αRe ≥ 10 

3 
, 
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Fig. 1. The schematic of phases complete decoupling case: (a) a solid phase exists in cells i , i ± 1 , (b) a solid phase is absent in cells i , i ± 1 . 
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here d is the particles’ diameter, μvis is the dynamic gas viscosity 

oefficient. 

. Numerical algorithm 

The computational algorithm was based on the Strang splitting 

rinciple: 

 

n +1 
j 

= L s L relax L h U 

n 
j . (7) 

Here U 

n +1 
j 

is the unknown grid function, j is the spatial in- 

ex, n is the time index. At the hyperbolic stage of the algorithm 

enoted as operator L h , the defining system of equations (1) was 

olved with p = 0 and s = 0 . After that a pressure relaxation pro-

edure L relax was implemented. Finally, non-differential algebraic 

ource terms that describe interfacial interaction were taken into 

ccount and this step of the algorithm was denoted as L s . 

.1. Hyperbolic step 

The computational domain was a one-dimensional segment of 

he length L which is divided into N uniform cells. The cells were 

numerated using index i from 1 to N. The size of the compu- 

ational cell was �x = L/N . The construction of a finite-volume 

cheme for the current computational cell i started with the analy- 

is of the gaps | ̄αn + 
i −1 

− ᾱn −
i 

| and | ̄αn −
i +1 

− ᾱn + 
i 

| (see Fig. 1 ). Signs “+ ”

nd “–” in the superscripts in Fig. 1 denote the reconstructed val- 

es. For the increase of the accuracy order in space, a component- 

ise reconstruction of the conservative vectors in the computa- 

ional cells using a minmod limiter was carried out: 

 

n ±
i 

= U 

n 
i ±

1 

2 

�x ( ∂U / ∂x ) 
n 
i , 

 

∂U / ∂x ) 
n 
i = minmod 

(
U 

n 
i 

− U 

n 
i −1 

�x 
, 

U 

n 
i +1 

− U 

n 
i 

�x 

)
, i = 2 , ..., N − 1 , 

(8) 

 ( a, b ) = 

1 

2 

( sign ( a ) + sign ( b ) ) · min ( | a | , | b | ) . 
Formula (8) was valid for the inner cells of the computational 

omain. For the boundary cells, the gradients of the conservative 

ector components were taken equal to zero: 

∂U 

∂x 

)n 

1 

= 

(
∂U 

∂x 

)n 

N 

= 0 . 

We will now consider possible situations for the relation be- 

ween ᾱn + 
i −1 

and ᾱn −
i 

, ᾱn + 
i 

and ᾱn −
i +1 

. 
4 
.1.1. Case of phases complete decoupling 

This case was characterized by the following relations: ∣∣ᾱn + 
i −1 

− ᾱn −
i 

∣∣ ≤ ε decouple , 
∣∣ᾱn −

i +1 
− ᾱn + 

i 

∣∣ ≤ ε decouple , (9) 

here ε decouple was a small positive number. This case included 

oth situations when a solid phase was present or absent in neigh- 

or cells. A solid phase was considered to be absent in a cell when 

¯ was less than ε disp _ abs , where ε disp _ abs was also a small posi- 

ive number. The relation ε decouple � ε disp _ abs was considered to be 

rue. In the present work, the following small constants were used 

n all simulations: ε decouple = 10 −3 , ε disp _ abs = 10 −6 . 

Both inequalities (9) should be valid simultaneously. The gradi- 

nt ᾱx was considered to be zero in cells i , i ± 1 and the defining

ystem (1) was split into two independent subsystems of Euler- 

ype equations for each phase: 

 

 

dec 

t + 

� 

f 
dec 

x 

(
� 

u 
dec 
)

= 0 , 
� 

u 
dec = 

[ 
αρ
αρv 
αρE 

] 
= α· � 

u , 
� 

f 
dec 

= 

⎡ 

⎣ 

αρv 
α
(
ρv 2 + p 

)
α
(
ρE + p 

)
⎤ 

⎦ = α· � 

f , 

(10) 

 

 

dec 

t + 

� 

f 
dec 

x 

(
� 

u 
dec 
)

= 0 , 
� 

u 
dec = 

[ 
αρ
αρv 
αρE 

] 
= α· � 

u , 
� 

f 
dec 

= 

⎡ 

⎣ 

αρv 
α
(
ρv 2 + p 

)
α( ρE+p ) 

⎤ 

⎦ = α· � 

f . 

(11) 

Since ᾱx = 0 , then ᾱ = const and α = const . So, each of the sys- 

ems (10) and (11) was solved using the classical Godunov method 

or the single phase Euler equations ( Godunov et al., 1976 ) accord- 

ng to the realization details in ( Toro, 2009 ): 

� 

U 

n +1 

i − � 

U 

n 

i 

�t n 
+ 

� 

F 
Godunov 

i +1 / 2 

(
� 

U 

n + 
i , 

� 

U 

n −
i +1 

)
− � 

F 
Godunov 

i −1 / 2 

(
� 

U 

n + 
i −1 , 

� 

U 

n −
i 

)
�x 

= 0 , 

� 

U 

n +1 

i − � 

U 

n 

i 

�t n 
+ 

� 

F 
Godunov 

i +1 / 2 

(
� 

U 

n + 
i , 

� 

U 

n −
i +1 

)
− � 

F 
Godunov 

i −1 / 2 

(
� 

U 

n + 
i −1 , 

� 

U 

n −
i 

)
�x 

= 0 . 

A time-step �t n was chosen dynamically from the stability con- 

dition: 

�t n = CFL · min 

i 

( 

�x ∣∣v n 
i 

∣∣+c n 
i 

, 
�x ∣∣v n i 

∣∣+ c 
n 
i 

) 

, 

c = 

√ 

γ
p + π0 

ρ
, c = 

√ 

γ
p + π0 

ρ
, (12) 

here c is the speed of sound, CFL is the coefficient ranging from 

 to 1. 
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t

s

The case of phases complete decoupling was the most trivial 

ne among the considered. At the same time, it was most often 

mplemented in the simulations because it corresponded to the 

ubdomains with pure gas and subdomains inside the particles 

ayer at some distance from it boundaries. A solid phase volume 

raction remained unchanged in the cell i and was updated on the 

ext time step: ᾱn +1 
i 

= ᾱn 
i 
. Therefore, in case of phases complete 

ecoupling, vector of conservative variables at the end of the hy- 

erbolic step was as follows: 

 

n +1 
i 

= 

⎡ 

⎢ ⎣ 

αn 
i 

αn 
i 

� 

U 

n +1 

i 

αn 
i 

� 

U 

n +1 

i 

⎤ 

⎥ ⎦ 

. 

.1.2. Case of a solid phase volume fraction gap 

Suppose now that at least one of the conditions (9) (for in- 

tance, the second one for the edge i + 1 / 2 ) was not valid. Then

he decoupling approach from the Section 3.1.1 was applied for an- 

ther edge only and provided not the updated conservative vari- 

bles vector in the current cell i but only the numerical flux vec- 

or: 

 R 

(
U 

n + 
i −1 

, U 

n −
i 

)
= 

⎡ 

⎢ ⎢ ⎣ 

0 

αn 
i . 

� 

F 
Godunov 

i −1 / 2 

(
� 

U 

n + 
i −1 , 

� 

U 

n −
i 

)
α

n 
i . 

� 

F 
Godunov 

i −1 / 2 

(
� 

U 

n + 
i −1 , 

� 

U 

n −
i 

)
⎤ 

⎥ ⎥ ⎦ 

, 

n the following coupled finite volume scheme: 

U 

n +1 
i 

− U 

n 
i 

�t n 
+ 

F L 
(
U 

n + 
i 

, U 

n −
i +1 

)
− F R 

(
U 

n + 
i −1 

, U 

n −
i 

)
�x 

= 0 . 

As for the edge i + 1 / 2 the gap in ᾱ was significant, the Go- 

unov numerical flux for the BN equations ( Schwendeman et al., 

006 ) should be written: 

 L 

(
U 

n + 
i 

, U 

n −
i +1 

)
 ︷︷ ︸ 

full flux 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f 

⎛ 

⎜ ⎝ 

U 

∗[U 

n + 
i 

, U 

n −
i +1 

]
︸ ︷︷ ︸ 

Riemann problem solution 

⎞ 

⎟ ⎠ 

− H 

(
U 

n + 
i 

, U 

n −
i +1 

)
︸ ︷︷ ︸ 

non-conservative part of the full flux 

, if v n c ,i +1 / 2 < 0 , 

f 
(
U 

∗[U 

n + 
i 

, U 

n −
i +1 

])
, ︸ ︷︷ ︸ 

conservative part of 
the full flux 

if v n c ,i +1 / 2 ︸ ︷︷ ︸ 
velocity of the 
solid contact 

> 0 , 

(13

 R 

(
U 

n + 
i 

, U 

n −
i +1 

)
 ︷︷ ︸ 

full flux 

= 

{
f 
(
U 

∗[U 

n + 
i 

, U 

n −
i +1 

])
, if v n c ,i +1 / 2 < 0 , 

f 
(
U 

∗[U 

n + 
i 

, U 

n −
i +1 

])
+ H 

(
U 

n + 
i 

, U 

n −
i +1 

)
, if v n c ,i +1 / 2 > 0 . 

(14) 

The non-conservative part of the full flux is calculated using the 

elation below: 

 

(
U 

n 
i , U 

n 
i +1 

)
= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−v̄ n 
c ,i + 1 / 2 

(
ᾱn 

i +1 
− ᾱn 

i 

)
0 

p̄ n 
i +1 ̄

αn 
i +1 

− p̄ n 
i 
ᾱn 

i 

v̄ n 
c ,i + 1 / 2 

(
p̄ n 

i +1 ̄
αn 

i +1 
− p̄ n 

i 
ᾱn 

i 

)
0 

−
(

p̄ n 
i +1 ̄

αn 
i +1 

− p̄ n 
i 
ᾱn 

i 

)
−v̄ n 

c ,i + 1 / 2 
(

p̄ n 
i +1 ̄

αn 
i +1 

− p̄ n 
i 
ᾱn 

i 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (15) 

If both conditions (9) were not valid, the numerical fluxes for 

oth edges were calculated using (13), (14). The key point was the 

onstruction of the Riemann problem solution U 

∗[ ., . ] . In turn, it 

lso contained two distinct cases, namely the case of solid phase 

xistence from both sides of the edge (see Fig. 2 a) and solid phase

anishing case (see Fig. 2 b). 

The algorithm of the Riemann problem solution U 

∗ for the 

tates U and U from different sides of the discontinuity included: 
L R 

5 
- Finding initial guesses for the gas and solid pressures, gas 

and solid velocities at the solid contact from the solution of 

the classical single-phase Riemann problems 
� 

U 

∗
( 
� 

U L , 
� 

U R ) and 

� 

U 

∗
( 
� 

U L , 
� 

U R ) ; 

- Iterative solution of the system of four (the case from Fig. 2 a) or

three (the case from Fig. 2 b) non-linear algebraic equations us- 

ing Newton solver to find gas and solid pressures to the left and 

to the right from the discontinuity. In the case from Fig. 2 b, the

solid phase vanished in the cell i + 1 so the solid phase pres- 

sure here did not have the physical meaning. So, the system of 

three equations to find solid phase pressure to the left and gas 

pressure to the left and to the right of the discontinuity was 

solved. Velocity of the solid contact that was used in (13)– (15) 

was also found. The systems of non-linear algebraic equations 

and their Jacobians are written in the Appendix; 

- Sampling the total solution of the Riemann problem in gas and 

solid phases. 

For more details, our C ++ code is available ( Computer Code 

or the Godunov Solver, 2020 ). It is not the constituent part of 

he whole code directly, but it is a clarified and extensively com- 

ented Toro-like code for the solution of a single Riemann prob- 

em for the BN equations, implemented for the case of a solid 

hase volume fraction gap when solid phase exists on both sides 

f the initial discontinuity (the case from Fig. 2 a). 

The accuracy of the numerical method in the hyperbolic step 

n time is equal to unity due to the explicit Euler time integra- 

ion scheme. The overall accuracy of the numerical algorithm is 

lso equal to unity because of the properties of the Strang splitting 

cheme (7) ( Toro, 2009 ). The overall accuracy of the numerical al- 

orithm in space is equal to two on smooth solutions due to the 

roperties of minmod reconstruction ( Toro, 2009 ). 

.2. Relaxation procedure and algebraic source terms 

For the simulation of reversible loading of the layer the stiff

ressure relaxation was realized. Initially in ( Baer and Nunzi- 

to, 1986 ) the finite rate of pressure relaxation was defined by the 

erm F in (1). Transition to (2) was carried out under the assump- 

ion of μc → 0 and so the specific value of μc was not necessary 

or the stiff pressure relaxation. The following system of ordinary 

ifferential equations was solved: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dα
dt 

= −F , 

d(αρ) 
dt 

= 0 , 

d(αρv ) 
dt 

= 0 , 

d(αρE) 
dt 

= pF , 

d( ̄αρ̄) 
dt 

= 0 , 

d( ̄αρ̄v̄ ) 
dt 

= 0 , 

d( ̄αρ̄Ē ) 
dt 

= −(p + β) F . 

(16) 

From the second, the third, the fifth and the sixth equations of 

16) velocities of the solid and gas phases remained constant at 

his stage. Using this fact and the first equation the fourth and the 

eventh equations were rewritten as: 

d ( αρe ) 

dt 
= −p 

dα

dt 
, 

d ( ̄αρ̄ ē ) 

dt 
= −( p + β) 

dα

dt 
. 

The consequences of the second and fifth equations were: 

dα

dt 
= −α

ρ

dρ

dt 
, 

d ̄α

dt 
= − ᾱ

ρ̄

d ̄ρ

dt 
. 

Then the fourth and seventh equations became: 

de 

dt 
= −p 

d 

dt 

(
1 

ρ

)
, 

d ̄e 

dt 
= −( p + β) 

d 

dt 

(
1 

ρ̄

)
. 
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Fig. 2. The schematic of the case of a solid phase volume fraction gap: (a) solid phase exists from the both sides from the edge; (b) solid phase vanishing case. 
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Fig. 3. The typical view of ϕ function (18) in verification simulation from 

Section 4.2 The time instant is 560 μs, x = 1 . 4m . 
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After the discretization and approximation of the derivatives 

 Saurel and Lemetayer, 2001 ) these equations were written in the 

ollowing way: 
 

 

 

e n +1 − e n = − 1 
2 

(
p n +1 + p n 

)(
1 

ρn +1 − 1 
ρn 

)
, 

ē n +1 − ē n = − 1 
2 

(
p n +1 + βn +1 + p n + βn 

)(
1 

ρ̄n +1 − 1 
ρ̄n 

)
. 

The usage of the stiffened gas EOS for the particles and for the 

as phase led to the following system of non-linear algebraic equa- 

ions to find p n +1 , ρn +1 and ρ̄n +1 : 

 

 

 

 

 

 

 

 

 

 

 

p n +1 + γπ0 

ρn +1 ( γ −1 ) 
− p n + γπ0 

ρn ( γ −1 ) 
= − 1 

2 

(
p n +1 + p n 

)(
1 

ρn +1 − 1 
ρn 

)
, 

p n +1 + βn +1 + ̄γ π̄0 

ρ̄n +1 ( ̄γ −1 ) 
− p̄ n + ̄γ π̄0 

ρ̄n ( ̄γ −1 ) 
= − 1 

2 

(
p n +1 + βn +1 + p n + βn 

)(
1 

ρ̄n +1 − 1 
ρ̄n 

)
, 

αn ρn 

ρn +1 + 

ᾱn ρ̄n 

ρ̄n +1 = 1 . 

(17) 

Here the constraint αn +1 + ᾱn +1 = 1 was also taken into ac- 

ount. The system then was reduced to one non-linear equation 

ith the unknown ρ̄n +1 which was solved numerically using New- 

on’s iterations: 

¯ n +1 
j+1 

= ρ̄n +1 
j 

− ϕ( ̄ρn +1 
j 

) / ϕ 

′ ( ̄ρn +1 
j 

) , 

 

(
ρ̄n +1 

j 

)
= 

p n+1 
j 

+β
(
ρ̄n +1 

j 

)
+ γ̄ π̄0 

( ̄γ − 1 ) ̄ρn +1 
j 

− p̄ n + γ̄ π̄0 

( ̄γ − 1 ) ̄ρn 

+ 

1 

2 

(
p n+1 

j 
+β
(
ρ̄n +1 

j 

)
+ p n + β( ̄ρn ) 

)( 

1 

ρ̄n +1 
j 

− 1 

ρ̄n 

) 

, 

(18) 

 

′ (ρ̄n +1 
j 

)
= 

1 

ρ̄n +1 
j ( ̄γ − 1 ) 

( 

dp n +1 
j 

d ̄ρn +1 
j 

+ 

dβ
(
ρ̄n +1 

j 

)
d ̄ρn +1 

j 

) 

−
p n +1 

j 
+ β
(
ρ̄n +1 

j 

)
+ γ̄ π̄0 (

ρ̄n +1 
j 

)2 
( ̄γ − 1 ) 

− 1 

2 

(
ρ̄n +1 

j 

)2 

(
p n +1 

j 
+ β
(
ρ̄n +1 

j 

)
+ p n + β( ̄ρn ) 

)

+ 

1 

2 

( 

dp n +1 
j 

d ̄ρn +1 
j 

+ 

dβ
(
ρ̄n +1 

j 

)
d ̄ρn +1 

j 

) ( 

1 

ρ̄n +1 
j 

− 1 

ρ̄n 

) 

, 
6 
here j denotes iterations index and 

p n +1 
j 

(
ρ̄n +1 

j 

)
= 

1 

ρn +1 
j 

(
− γπ0 

γ −1 
− p n 

2 

)
+ 

p n + γπ0 

( γ −1 ) ρn + 

p n 

2 ρn 

1 
ρn +1 

j 

· γ +1 
2 ( γ −1 ) 

− 1 
2 ρn 

, ρn +1 
j 

(
ρ̄n +1 

j 

)

= 

( 

1 

αn ρn 
− 1 

ρ̄n +1 
j 

· ᾱn ρ̄n 

αn ρn 

) −1 

. 

Parameters calculated on the previous stage of the Strang split- 

ing scheme were taken as initial values in Newton’s iterations. It 

an be seen from Fig. 3 that Eq. (18) had only one possible solution 

or the range of parameters typical for the considered problem. The 

oot of ϕ function in general was found within 1-2 iterations with 

he accuracy at least | ( ̄ρn +1 
j+1 

− ρ̄n +1 
j 

) / ̄ρn +1 
j 

| = 10 −7 . Then the rest 

arameters were found: 

v n +1 = v n , ̄v n +1 = v̄ n , p̄ n +1 = p n +1 + βn +1 , αn +1 = αn ρn / ρn +1 , 

¯ n +1 = 1 − αn +1 . 

For the simulation of an irreversible compaction of the particles 

he system (17) was solved only if p̄ n > p n + βn and ᾱn > ε disp _ abs . 

therwise the compaction with the finite rate F was taken into 

ccount at the final stage L s of the splitting procedure (7). 

The final stage of the numerical algorithm took into account the 

hysical processes described by the algebraic source terms in the 

ector s and possibly vector p in case of irreversible compaction 

n (1). The solution from the previous pressure relaxation step was 

aken as the initial condition. The system of ordinary differential 

quations was solved numerically using explicit Euler scheme. 
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. Verification 

.1. Riemann problem 

The Riemann problem for the reduced BN equations (without p 

nd s terms in (1)) from (Schwendeman, 2006) was considered as 

 test for the non-vanishing solid phase case. Computational do- 

ain was a segment [0;1]. Non-penetrating conditions were im- 

osed at the boundaries. The following dimensionless parameters 

ere used as the initial data to the left and to the right of discon-

inuity at x = 0 . 5 : 

¯ L = 0 . 8 , ρ̄L = 1 . 0 , ̄v L = 0 . 0 , p̄ L = 1 . 0 , ρL = 0 . 2 , v L = 0 . 0 , p L = 0 . 3 ,

¯ R = 0 . 3 , ρ̄R = 1 . 0 , ̄v R = 0 . 0 , p̄ R = 1 . 0 , ρR = 1 . 0 , v R = 0 . 0 , p R = 1 . 0

CFL number was equal to 0.8. This test case is available as a 

ample in our computer code ( Computer Code for the Godunov 

olver, 2020 ). Fig. 4 shows the convergence of the numerical so- 

ution to the exact one with grid refinement. 

.2. Rogue shock tube 

In our previous study ( Utkin, 2017 ), ( Utkin, 2019 ), we focused

n the parametric numerical simulation of a SW – particles cloud 

nteraction problem ( Rogue et al., 1998 ) using the HLL method 

 Saurel and Abgrall, 1999 ) and the Godunov method (Schwende- 

an, 2006). Unlike previous work, intergranular stresses in the 

olid phase were taken into account in the stiff pressure relaxation 

rocedure here. Similar to ( Saurel et al., 2010 ), we did not take into

ccount irreversible compaction of particles here. 

The statement of the problem corresponded to the full-scale ex- 

eriment ( Rogue et al., 1998 ) and was the same as in ( Utkin, 2017 )

nd ( Utkin, 2019 ). A SW with Mach number M = 1 . 3 interacted

ith a cloud of glass spherical particles of the diameter d = 

 . 5 mm and the initial volume fraction ᾱ0 = 0 . 65 . The initial true

ensity of particles was ρ̄0 = 2500 kg / m 

3 . The length of the com- 

utational domain was 2.8 m. The left boundary of the domain was 

 = 0 . The coordinate of the left boundary of the cloud of parti-

les was equal to x L = 1 . 39m , the coordinate of the right bound-

ry was x R = 1 . 41m . At the initial time moment a SW was located

t the point with the coordinate x R that is at the right boundary 

f the cloud and moved from the right to the left. The gas pres-

ure was recorded with the use of three transducers located at 

he points with the coordinates x 1 = 0 . 692m , x 2 = 1 . 367m (down-

tream transducers) and x 3 = 1 . 520m (upstream transducer). At 

he initial time moment the area [0 ; x R ] was filled with the qui- 

scent air under the normal conditions. The non-penetrating con- 

ition was set at the left boundary, the inflow condition with the 

arameters behind the SW with Mach number 1.3 was set at the 

ight boundary. The simulation time was 4 ms and corresponded 

o the compression phase duration behind the incident SW in the 

xperiments ( Rogue et al., 1998 ). Parameters in (3)– (6) used in the 

imulation were close to ( Saurel et al., 2010 ): 

ᾱcrit = ᾱ0 , a = 3 · 10 4 J / kg , n = 1 . 02 . 

Parameters in the stiffened gas EOS for the solid phase were the 

ollowing ( Utkin, 2017 ): 

= 2 . 5 and π0 = 10 

8 Pa . (19) 

In our simulation, a cells number was equal to 22 400, CFL 

umber was equal to 0.5. 

The evolution of the solid phase volume fraction at the initial 

ime moments was analyzes for both cases – with and without 

ntergranular stresses. Interaction of an incident SW with a cloud 

ed to the CW in the solid phase and filtration wave in gas. Fig. 5 ,

eft illustrates the dynamics of the forward propagation of the CW 

long the particles cloud. 
7 
After that a CW interacted with a free boundary of the cloud, 

eflected from it and propagated to the right followed by some 

ind of the analogue of solid phase rarefaction wave. Up to the 

ime instant of about 0.15 ms, a maximal solid phase volume frac- 

ion decreased below ᾱcrit and from that time configuration pres- 

ure was equal to zero. Fig. 6 demonstrates the comparison of 

imulations with and without intergranular stresses. The increase 

f ᾱ up to 0.672 was observed in the case without intergranular 

tresses in contrast to about 0.652 in the case with intergranular 

tresses. At the same time the leading edge of the “compacted”

loud moved at longer distance (see Fig. 6 b). Interaction of the in- 

ident SW with the dense particles cloud led to the formation of 

he reflected and transmitted waves (see Fig. 7 ). Pressure transduc- 

rs No. 1 and 2 detected a transmitted wave, transducer No. 3 – a 

eflected wave. The relative error in comparison with the experi- 

ental data for the transducers No. 2 and 3 did not exceed 3%. The 

imulation correctly reproduced the change in the rate of pressure 

urve growth on the transducer No. 2 at a time of about 2.5 which 

as associated with the passage of a cloud of particles through 

he point at which the transducer was installed. On the transducer 

o. 1, the maximum relative error was about 5%. The influence of 

he intergranular stresses on the intensities of transmitted and re- 

ected waves appeared to be negligibly small although the dynam- 

cs of cloud motion was more relevant from the physical point of 

iew at the initial stages of the process in the simulation with in- 

ergranular stresses. 

The leading edge of the cloud remained very sharp due to the 

sage of the Godunov method (see Fig. 6 ). Its thickness in terms 

f computational cells increases from approximately 5 at the time 

oment 0.2 ms to approximately 20 at the time moment 1.4 ms. 

t was shown in ( Utkin, 2019 ) that the usage of the HLL method

ed to about 5 times greater spatial smearing of the leading front 

f the cloud at the final time 4 ms as well as the lowering the

aximal solid phase volume fraction in the cloud up to about 0.3 

nstead of 0.5 in the simulation using the Godunov scheme. 

. Interaction of a shock wave with a layer of particles near a 

igid wall 

.1. Statement of the problem 

Statement of the problem corresponded to the full-scale experi- 

ents ( Gelfand et al., 1989 ). Experiments were performed in a ver- 

ical shock tube 3 m long. It consisted of a high-pressure cham- 

er filled with nitrogen or helium which was separated from the 

ow-pressure chamber filled with air under normal conditions by 

 diaphragm. As a diaphragm was removed, a SW was generated 

nd it interacted with a layer of polystyrene particles 20 mm thick 

see Fig. 8 ). The diameter of the particles was 0.2 mm and the ini-

ial volume fraction of particles constituted 0.48. The low-pressure 

hamber was equipped with several pressure transducers. We were 

nterested in the wall pressure under the particles layer. Therefore, 

he data from the correspondent transducer was reproduced in the 

imulations. 

Similar to Section 4.2 , we consider a one-dimensional frame of 

eference Ox . Point O corresponded to the left boundary of the 

omputational domain with a length of 0.37 m. The coordinate of 

he left boundary of the spherical particles layer was x L = 0 . 35m ,

hile the coordinate of the right boundary coincided with the 

ight end of the computational domain and constituted x R = 0 . 37 

. The initial true density of the solid phase was ρ̄0 = 1060 kg / m 

3 . 

t the initial time moment the SW was located at the point with 

he coordinate x S = x L and moved from the left to the right. The 

rea [ x S ; x R ] was initially filled with the quiescent air (the specific 

eat ratio was γ = 1 . 4 , π0 = 0 ) with the density ρ0 = 1 . 2 kg / m 

3 

nd under the pressure p = 10 5 Pa . In the area [0 ; x ] , we set pa-
0 S 
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Fig. 4. Solution of the Riemann problem for the reduced BN equations using the Godunov method (second order in space) on three different grids in comparison with the 

exact solution. 
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α

ameters behind the SW with a Mach number M = 1 . 36 propagat-

ng in the positive direction of the axis Ox : 

ρM 

= 1 . 95 kg / m 

3 , v M 

= 179 . 97 m / s and p M 

= 2 . 00 · 10 5 Pa . 

The non-penetrating condition was set at the right boundary, 

he inflow condition with the parameters ρM 

, v M 

and p M 

was set 

t the left boundary. Parameters of the solid phase stiffened-gas 

OS were the same as in the Rogue test. The influence of those 

(

8 
arameters in the considered problem of SW– particles layer in- 

eraction was very small, see Section 5.2 . As a result of another 

arametric study (see also Section 5.2 ), the following parameters 

n the intergranular stresses model (2) – (6) were chosen: 

crit = 0 . 48 , a = 10 

5 J / kg , n = 1 . 02 . 

The variation started with the basic parameters from 

 Saurel et al., 2010 ) that were obtained from the analysis of 
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Fig. 5. Predicted spatial distributions of the solid phase volume fraction (red lines), pressure of the solid (blue lines) and the gas (green lines) phases at the successive time 

moments in the simulation with intergranular stresses. Here and further the black dashed line denotes ᾱcrit level in (4). 

Fig. 6. Predicted spatial distributions of the solid phase volume fraction at the successive time moments with a gap 0.2 ms: (a) without intergranular stresses; (b) with 

intergranular stresses. Dots denote computational cell centers. 
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xperiments on compression of HMX and NaCl in the pressure 

ange of 0.1 – 25 MPa. Computational cell grid size was equal to 

x = 0 . 125 mm. 

Experiments ( Gelfand et al., 1989 ) were also simulated 

n ( Kutushev and Rudakov, 1993 ) and ( Fedorov and Fe- 

orchenko, 2005 ). The latter one used a dusty gas mathematical 

odel and therefore the simulation of this problem was carried 

ut with a volume fraction of particles being equal to 0.015. 

or this reason, the effects of inter granular stresses in the solid 

hase were not taken into account, and, in fact, only waves in the 

as phase were described. In ( Kutushev and Rudakov, 1993 ), R.I. 

igmatulin model ( Nigmatulin, 1990 ) was used. The model took 

nto account intergranular stress in the phase of particles. The 

odel of intergranular stresses was more complex than (3) – (6), 

ut also had a threshold form. Further, the obtained results will 

e compared to the data from ( Kutushev and Rudakov, 1993 ). 
A  

w

p

9 
.2. Results: reversible loading-unloading of the layer 

Initially, the problem was considered using the stiff pressure 

elaxation everywhere. Normally incident SW interacted with the 

articles layer that led to the formation of reflected wave propa- 

ated upstream in the pure air (see Fig. 9 a). Gas penetrated inside 

he layer as a compression wave with a smeared front. CW propa- 

ated in the solid phase. Its movement to the right across the layer 

as accompanied by the increase of the solid phase volume frac- 

ion and, hence, the origin of the configuration pressure. 

The period of time from t ≈ 0 . 06 ms to t ≈ 0 . 14 ms corre-

ponded to the sharp rise of the configuration pressure and hence 

he mixture pressure p mix = αp + ᾱ p̄ at the rigid wall. This mix- 

ure pressure was compared to the experimental data from the 

ressure transducer (see Fig. 10 ). Also the particles layer as a 

hole was compressed, the interface boundary shifted to the right. 

t t ≈ 0 . 14 ms a CW reflected from the wall and started moving to-

ards the interfacial boundary (see Fig. 9 b). At this time the solid 

hase volume fraction began decreasing gradually near the wall 
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Fig. 7. Comparison of the predicted (solid lines) and the experimental (Roguet 

et al., 1998) (dots) pressure curves on three transducers: green color– transducer 

No. 1, blue color– transducer No. 2, red color– transducer No. 3. 
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nd it brought about the steady decline of the p mix (see Fig. 10 ). 

t t ≈ 0 . 22 ms the CW reflected from the interfacial boundary and 

oved towards the wall while the volume fraction of the solid 

hase continued to decrease near the wall. The interface bound- 

ry changed the direction of its motion. Starting from t ≈ 0 . 3 ms 

he solid phase volume fraction became less than ᾱcrit near the 

all, intergranular pressure did not work any longer ( β = 0 ) and, 

ccording to the equilibrium condition (2), p̄ = p (see Fig. 10 ). 

We interpreted the experimental data from ( Gelfand et al., 

989 ) as an oscillating curve with a pronounced first peak, which 

as characterized by specific values of its amplitude and width. 

he experimental curve also reached a certain average value over 

ime. Predicted solid phase pressure as well as p mix were charac- 

erized by the first jump associated with the arrival of the CW. The 
Fig. 8. Schematic of the problem of a SW – parti

10 
ifference in the amplitude of this jump was approximately 15% 

n comparison with the experimental value. The experimental and 

redicted width of the peak correlated reasonably. There was also 

 correspondence in the level which all pressure curves eventually 

eached. At the same time the model with stiff pressure relaxation 

ith considered parameters did not provide the oscillations after 

he first pressure peak. Such oscillations are visible on the exper- 

mental curve. So we continued the parametric study of the solid 

hase EOS and intergranular stresses model parameters influence 

n the simulation results. 

Polystyrene at pressures of the order of GPa is described by 

he Mie-Gruneisen EOS ( Khishchenko et al., 1996 ), the longitudinal 

peed of sound in this material is about 2350 m/s ( Handbook of 

hemistry and Physics, 2005 ). For the used stiffened gas EOS, for 

he solid phase such speed of sound was obtained for the parame- 

ers γ̄ = 2 . 5 , π0 ≈ 2 . 6 · 10 9 Pa . Parameters (19) provided the speed

f sound 485 m/s under the normal conditions. However, Fig. 11 

emonstrates that the value of π̄0 influenced the pressure curve 

nder the layer insignificantly. The greatest effect here was the sig- 

ificant decrease of the integration time step (12). Similar effects 

ere observed in ( Utkin, 2017 ). Weak dependence of the results on 

he EOS parameters of the solid phase was determined by the fact 

hat polystyrene was almost incompressible within this problem. 

owever, nominal compressibility of both phases is an important 

eature of the considered BN model that ensures its hyperbolicity. 

An increase of parameter ᾱcrit above an initial value of the solid 

hase volume fraction in the layer of particles ᾱ0 led to a later on- 

et of the configuration pressure. In this case, the pressure of the 

olid phase increased smoothly near the wall, not abruptly in con- 

rast with the experiment (see Fig. 12 ). Volume fraction of the solid 

hase increased gradually at the free boundary of the layer, until 

t exceeded the threshold value ᾱcrit . After that a CW propagated 

hrough the layer of particles, and this process was accompanied 

y an increase in pressure near the wall. The pressure rise was 

harper for the greater values of ᾱcrit . The amplitude of the pres- 

ure peak also increased. Simulation with ᾱcrit less than ᾱ0 caused 

he decrease of the amplitude of the pressure peak and the in- 

rease of its width. Such value of ᾱcrit implied the existence of the 

nitial intergranular stress not connected with the impact of the 

W. This assumption was considered to be non-physical in the an- 

lyzed problem. 
cles layer interaction ( Gelfand et al., 1989 ). 
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Fig. 9. Predicted spatial profiles of the solid phase volume fraction, solid phase pressure, gas phase pressure and configuration pressure at the successive time moments. 

The case of reversible loading-unloading process; ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 . 
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Variation of parameter a influenced the maximum pressure 

ear the wall insignificantly. However, it influenced the width of 

he pressure peak greatly (see Fig. 13 ). The greater configuration 

ressure led to the sharper rise of pressure at the moment of ar- 

ival of the CW to the wall and to the less gradual decrease of 

ressure when the CW reflected from the wall. Fig. 14 illustrates 
11 
ualitatively different case that occurred at the highest value of 

 = 5 · 10 5 J / kg . The first pressure peak did not differ from those

isscucced above in princliple. However, at about 0.5 ms the sec- 

ndary peak occurred. The jump of ᾱ behind the initial CW front 

ppeared to be smaller with the increase of a . It constituted about 

0 –3 for a = 5 · 10 5 J / kg in contrast to about 6 �10 –3 for a = 10 5 J / kg
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Fig. 10. Comparison of the pressure curves on the wall under the particles layer; 

ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 . The case of reversible loading-unloading process. 

Fig. 11. Effect of parameter π̄0 on p mix ; ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 . The case 

of reversible loading-unloading process. 
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Fig. 12. Effect of parameter ᾱcrit on p mix ; a = 3 · 10 4 J / kg , n = 1 . 02 . The case of re- 

versible loading-unloading process. 

Fig. 13. Effect of parameter a on p mix ; ᾱcrit = 0 . 48 , n = 1 . 02 . The case of reversible 

loading-unloading process. 
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see Fig. 9 a). Therefore, during the whole process ᾱ balanced near 

he level of ᾱcrit (see ᾱ distribution in Fig. 9 c at the time of 0.36

s as a qualitative example) and the mechanism of the second 

eak formation was connected with the accidental local rise of ᾱ
omewhere inside the layer up to the ᾱcrit value. The high value 

f configuration pressure then led to the new CWs propagation in 

oth directions to the wall and interface boundary. 

Parameter n in the range 1 + 10 −6 ≤ n ≤ 1 . 1 did not affect the

idth or the amplitude of the pressure peak significantly, as well 

s the mechanism of CW propagation in the layer. 

.3. Results: irreversible loading-unloading of the layer 

Since a true oscillatory nature of the pressure curve on the wall 

nder the layer was not obtained in the “reversible” simulations 
12 
n the previous Section, we proceeded with the irreversible model 

f a granular layer compaction. In ( Saurel et al., 2010 ) a switch be-

ween a stiff pressure relaxation for p̄ > p + β and F = 0 otherwise 

as proposed. We used a finite compaction rate F with compaction 

iscosity μ = 10 4 Pa · s instead of F = 0 . 

The same parameters ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 were

sed as in the basic reversible simulation (see Fig. 9 , Fig. 10 ).

ig. 15 shows that irreversible compaction model provided dif- 

erent shape of the main pressure peak. It became to resemble 

ore the experimental observations. More importantly, irreversible 

ompaction provided oscillations of the pressure curve. The choice 

 = 0 in case p̄ ≤ p + β led to the non-damping pressure oscilla- 

ions so we added compaction viscosity to consideration. Spatial 

istributions in Fig. 16 clarify the mechanism of oscillations for- 
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Fig. 14. Predicted wall pressure history for ᾱcrit = 0 . 48 , a = 5 · 10 5 J / kg , n = 1 . 02 in 

comparison with the experiment. The case of reversible loading-unloading process. 

Fig. 15. Predicted wall pressure history for ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 in 

comparison with the experiment. Irreversible compaction case. 

m

r

f

n

fi

s

t

o

6

o

m

d

l

(  

t

p

f

i

e

c

e

e

a

(

f

d

l

f

c

e

i

s

(

e

o

F

c

w

I

e

d

c

t

o

r

m

o

R

m

(

c  

S

i

t

m

b

i

c

l

i

v

1  

r

1

f

(

p

1

l

ation. The main peak was formed in the same manner as in the 

eversible case, see Fig. 9 . However, after the reflection of a CW 

rom the wall the solid phase volume fraction near the wall did 

ot decrease as fast as in the reversible case. Consequently, con- 

guration pressure also remained nearly constant near the wall. In 

uch situation, the sources of oscillations are the pressure waves in 

he solid phase that travel between the wall and the free boundary 

f the layer with gradual damping. 

. Nowadays 

The models based on the BN equations and on the kinetic the- 

ry of granular media (KTGM) ( Gidaspow, 1994 ) are among the 

ost developed and widespread for the simulations of high-speed 

ense flows of two-phase media. Applied to the considered prob- 

em, these two classes of equations have the following difference 
13 
 Houim and Oran, 2016 ). In the approach based on the BN equa-

ions, one of the equations of the governing system is the com- 

action equation, the first equation of system (1), which has the 

ollowing form without the right-hand side term: 

∂ ᾱ

∂t 
+ ̄v 

∂ ᾱ

∂x 
= 0 . (20) 

It should be reminded that the BN model implies the compress- 

bility of both the gas and the solid phases. KTGM contains differ- 

nt equation for ᾱ evolution considering the particles phase in- 

ompressible: 

∂ ᾱ

∂t 
+ 

∂ 

∂x 
( ̄αv̄ ) = 0 . (21) 

The mathematical structure of Eqs. (20) and (21) is differ- 

nt. The Eq. (20) reflects the non-conservative nature of the BN 

quations. Therefore, different mechanisms of CWs propagation 

re inherent in the BN and KTGM models. It was supposed in 

 Houim and Oran, 2016 ) that the BN equations are poorly suited 

or describing waves in granular media and are better suited for 

escribing mixtures with particles volume fraction close to packing 

imit. Now we have an opportunity to compare simulation results 

or the same problem obtained using the models that explicitly 

ontain either Eq. (20) (author’s simulations) or (21). Eq. (21) was 

xplicitly included in the model ( Kutushev and Rudakov, 1993 ) 

n which the same experiment ( Gelfand et al., 1989 ) was con- 

idered. It should be noted that intergranular stresses model in 

 Kutushev and Rudakov, 1993 ) took into account nonlinear-elastic 

ffects during loading-unloading of the particles. 

In simulation ( Kutushev and Rudakov, 1993 ), oscillations were 

btained on the pressure curve on the wall under the layer (see 

ig. 10 ). However, the first pressure peak was described less pre- 

isely quantitatively (the differences in the amplitude and the 

idth reaches 50%) in comparison with the author’s simulations. 

n addition, the pressure curve reached the level different from the 

xperiment. The oscillations following the first pressure peak were 

escribed not quite right when compared to the experiment be- 

ause the amplitude of the following peaks was only slightly less 

han of the first computed one. The explanation of the pressure 

scillations was the following. Gas filtration provided constantly 

ising pressure under the layer. Separate “splashes” were deter- 

ined by the compression and rarefaction of the solid skeleton 

f the layer. The plot of configuration pressure in ( Kutushev and 

udakov, 1993 ) shows that the “splashes” corresponded to the mo- 

ents when it was not zero on the wall. The term “splash” from 

 Kutushev and Rudakov, 1993 ) emphasized that qualitatively the 

haracter of secondary pulsations was similar to Fig. 14 , not Fig. 15 .

eparate peaks were superimposed on the monotonically increas- 

ng curve, as it happened in Fig. 14 . This is especially noticeable for 

he third peak, see the orange curve in Fig. 10 . Thus, although we 

anaged to obtain similar regime in our reversible BN simulations 

y means of variation of parameters in (2) – (6), commonly real- 

zed flow field from Fig. 9 do not give a premise for oscillations oc- 

urrence. In contrast, irreversible compaction model contains oscil- 

ations as its essential part according to the mechanism described 

n Section 5.3 but this mechanism is indeed different from that re- 

ealed in ( Kutushev and Rudakov, 1993 ). 

The essence of the experiment considered in ( Gelfand et al., 

989 ) was later repeated in the work ( Britan et al., 1997 ) al-

eady discussed in the Introduction. The authors in ( Britan et al., 

997 ) used an improved experimental setup and investigated dif- 

erent mixtures of particles. These experiments were simulated in 

 Gubaidullin et al., 2003 ), where a two-speed model of a saturated 

orous medium with two stress tensors was used (Nugmatulin, 

990). In this model, there is no explicit expression for intergranu- 

ar stresses with a switch upon reaching a certain volume fraction 
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Fig. 16. Predicted spatial profiles of the solid phase volume fraction, solid phase pressure, gas phase pressure and configuration pressure at the successive time moments. 

Irreversible compaction case; ᾱcrit = 0 . 48 , a = 10 5 J / kg , n = 1 . 02 . 

14 
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Fig. 17. The schematic of the Riemann problem solution of the BN system of equations in the subsonic case ( Schwendeman et al., 2006 ). General case when both phases 

exist to the left and to the right from the discontinuity. All notations are standard, see ( Toro, 2009 ). 

Fig. 18. The schematic of the Riemann problem solution of the BN system of equa- 

tions in case of the absence of the solid phase to the right from the solid contact. 
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f particles. In simulations, the experimental statements were con- 

idered for the layers with the thicknesses from 10 mm to 40 mm, 

orosities from 0.389 to 0.456, particle diameters from 0.225 mm 

o 1.665 mm and incident SW Mach number about 1.32. In the ma- 

ority of simulations, the predicted pressure curves did not demon- 

trate oscillations after the first peak although the correspondent 

xperimental data did. At the same time there were several sim- 

lations with damping oscillations that qualitatively differed from 

scillations in ( Kutushev and Rudakov, 1993 ) and were similar to 

ig. 15 . These were not the additional solid pressure peaks super- 

mposed on the gas pressure but sinusoidal pulsations. The neces- 

ity of taking into account plastic phenomena even at small cyclic 

oads was indicated as one of the factors affecting the difference 

etween the predicted and experimental data in ( Gubaidullin et al., 

003 ). So in fact the authors spoke in favor of using irreversible 

ompaction model. 

. Conclusions 

1. Thus, we continued our research ( Utkin, 2019 ) on the features 

of the application of the Godunov method for the solution of 

the BN equations applied to practical problems in the field of 

two-phase granular media flows. This time we have developed 

a robust computational algorithm that allows solving problems 

with explicit interphase boundaries and accounting for the ef- 

fects of intergranular stresses in the solid phase. The algorithm 

was based on the Godunov method ( Schwendeman et al., 2006 ) 

– in a sense, the most general and accurate possible method 

for the Riemann problem solution. The algorithm also includes 
15 
the pressure relaxation procedure which goes back to the works 

of R. Saurel and coauthors. Two approaches for the pressure 

relaxation were considered. The first one corresponds to the 

stiff local interfacial boundary equilibrium and so the reversible 

loading-unloading of the particles layer. The second approach 

implements irreversible compaction of the particles. The com- 

putational algorithm of the Godunov method was described in 

detail, including the analysis of all cases of the solid phase vol- 

ume fraction ratio in adjacent computational cells. Computer 

C ++ code ( Computer Code for the Godunov Solver, 2020 ) is 

available that implements the Godunov solver for the BN equa- 

tions in case of presence of a solid phase volume fraction gap in 

the neighbor cells. Pressure relaxation procedure taking into ac- 

count intergranular stresses in the solid phase of particles was 

also descried in detail. 

2. The developed algorithm was used to simulate an experiment 

( Gelfand et al., 1989 ) devoted to the normal incidence of a SW 

on a dense layer of particles near a rigid wall. As in many other 

studies the first peak on the pressure curve under the layer of 

particles was associated with the propagation of a CW through 

the layer and its subsequent reflection from the wall. A para- 

metric study of the influence of parameters in the intergran- 

ular stresses model ( Saurel et al., 2010 ) was carried out. The 

obtained set of parameters provided a difference of 15% in the 

value of the peak amplitude in the simulation and the exper- 

iment. However, the model of reversible loading-unloading of 

the layer did not provide oscillations of the pressure curve. On 

the contrary, irreversible compaction model contains such os- 

cillations also observed in the experiment as an essential part. 
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A

 neighbor cells meaning that each of the parameters ᾱn + 
i 

and ᾱn −
i +1 

are 

g d U R from different sides of the discontinuity in this case the following 

s

N (22) 

⎧⎪⎪⎨
⎪⎪⎩ (23) 

⎧⎪⎪⎨
⎪⎪⎩ (24) 

w ) corresponds to the configuration of waves described in Fig. 17 b while 

t  b, c denotes the intermediate state between the solid and gas contacts. 

T t of the solid contact. 

in gas phase: 

v (25) 

v (26) 

w

F
 

, 

G

w

with adding upper bar for all variables. 

g Newton method demands the construction of the Jacobian. Its com- 

p

∂N 2 

∂ p 2 
= −αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ d F R 
d p 2 

, 

 

, 

 ) ρ1 

(
p 1 
ρ1 

d G L 

d p 1 
− 1 

)
+ �v 1 

d F L 
d p 1 

, 

�v 2 
d F R 
d p 

. 
ppendix. Finding Gas and Solid Pressure at the Solid Contact 

Both phases are present in the neighbor cells 

Fig. 2 a represents the case where two phases are present in the

reater than ε disp _ abs in both cells i and ( i + 1 ) . For the states U L an

ystem of equations is solved: 

 ( p 1 , p 2 , p̄ 1 , p̄ 2 ) = 0 , 

 

 

 

 

 

 

 

N 1 = v 2 − v 1 , 
N 2 = αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ
�v 2 − αL �v 1 , 

N 3 = αR p 2 + αR p 2 − αL p 1 − αL p 1 + αL ρ1 �v 1 �v , 
N 4 = 

( p 2 + π0 ) γ
( γ −1 ) ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ + 

1 
2 

(
�v 2 2 − �v 2 1 

)
− ( p 1 + π0 ) γ

( γ −1 ) ρ1 
, 

if v 1 > v 1 , 

 

 

 

 

 

 

 

N 1 = v 2 − v 1 , 
N 2 = αR �v 2 − αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ
�v 1 , 

N 3 = αR p 2 + αR p 2 − αL p 1 − αL p 1 + αR ρ2 �v 2 �v , 
N 4 = 

( p 2 + π0 ) γ
( γ −1 ) ρ2 

+ 

1 
2 

(
�v 2 2 − �v 2 1 

)
− ( p 1 + π0 ) γ

( γ −1 ) ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ
, 

if v 1 < v 1 . 

here �v 1 = v 1 − v 1 , �v 2 = v 2 − v 2 , �v = v 2 − v 1 . The system (23

he system (24) agrees with the Fig. 17 c. The subscript “0” on Fig. 17

he subscripts 1 and 2 denote the states to the left and to the righ

The relations connected density and velocity with the pressure 

 1 = v L − F L ( p 1 ) , ρ1 = G L ( p 1 ) , v 2 = v R + F R ( p 2 ) , ρ2 = G R ( p 2 ) . 

The analogous relations for the solid phase: 

 1 = v L − F L ( p 1 ) , ρ1 = G L ( p 1 ) , v 2 = v R + F R ( p 2 ) , ρ2 = G R ( p 2 ) , 

here: 

 S ( p ) = 

{ 

( p − p s ) 
[

A s 
p+ π0 + B s 

]1 / 2 
, if p > p s ( shock wave ) , 

2 a s 
( γ −1 ) 

[ (
p+ π0 

p s + π0 

)( γ −1 ) / 2 γ − 1 

] 
, if p < p s ( rarefaction wave )

 S ( p ) = 

{ 

ρs 

[
( γ −1 ) ( p s + π0 ) + ( γ +1 ) ( p+ π0 ) 
( γ −1 ) ( p+ π0 ) + ( γ +1 ) ( p s + π0 ) 

]
, if p > p s ( shock wave ) , 

ρs 

(
p+ π0 

p s + π0 

)1 /γ
, if p < p s ( rarefaction wave ) , 

ith: 

A s = 

2 
( γ +1 ) ρs 

, B s = 

( γ −1 ) 
( γ +1 ) 

( p s + π0 ) , a s = 

√ 

γ ( p s + π0 ) 
ρs 

, s = L, R . 

The expressions F̄ S ( ̄p ) and Ḡ S ( ̄p ) are the same as written above 

The solution of the algebraic non-linear system of Eq. (22) usin

onents for the system (23) are: 

∂N 1 

∂ p 1 
= 0 , 

∂N 1 

∂ p 2 
= 0 , 

∂N 1 

∂ p 1 
= 

d F L 
d p 1 

, 
∂N 1 

∂ p 2 
= 

d F R 
d p 2 

, 

∂ N 2 

∂ p 1 
= − αR 

γ ( p 1 + π0 ) 

(
p 2 + π0 

p 1 + π0 

)1 /γ

�v 2 + αL 
d F L 
d p 1 

, 

∂N 2 

∂ p 2 
= αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ
(

�v 2 
γ ( p 2 + π0 ) 

+ 

dF R 
dp 2 

)
, 

∂N 2 

∂ p 1 
= −αL 

d F L 
d p 1 

, 

∂ N 3 

∂ p 1 
= −αL + αL 

d G L 

d p 1 
�v 1 �v + αL ρ1 ( �v 1 − �v ) 

d F L 
d p 1 

, 

∂N 3 

∂ p 2 
= αR + αL ρ1 �v 1 

dF R 
dp 2 

, 
∂N 3 

∂ p 1 
= −αL + αL ρ1 �v 

d F L 
d p 1 

, 
∂N 3 

∂ p 2 
= αR

∂ N 4 

∂ p 1 
= 

( p 2 + π0 ) 

( γ − 1 ) ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ
(

1 

( p 1 + π0 ) 
− γ

ρ1 

d G L 

d p 1 

)
+ 

γ

( γ − 1

∂N 4 

∂ p 2 
= 

1 

ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ

+ �v 2 
dF R 
dp 2 

, 
∂N 4 

∂ p 
= −�v 1 

d F L 
d p 

, 
∂N 4 

∂ p 
= −
1 1 2 2 

16 
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0 ) 

(
p 1 + π0 

p 2 + π0 

)1 /γ

�v 1 + αR 
dF R 
dp 2 

, 
∂N 2 

∂ p 1 
= −αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ d F L 
d p 1 

, 
∂N 2 

∂ p 2 

v + �v 2 ) 
dF R 
dp 2 

, 

+

er, 2020 ). 

ct 

 right from the solid contact. In this special case the following system 

o

N

⎧⎨
⎩ (27) 

⎧⎨
⎩ (28) 

w (23) and (24) with the help of formal substitution ᾱL → 0 and v̄ 1 → v̄ 2 . 
T

 /γ δv L 
γ ( p 2 + π0 ) 

+ 

(
p 2 + π0 

p 1 + π0 

)1 /γ dF R 
dp 2 

, 

 αL ρ1 �v 1 
dF R 
dp 2 

, 

+

 

p 1 + π0 

p 2 + π0 

)1 /γ �v 1 
γ ( p 2 + π0 ) 

, 
The Jacobian components for the system (24) are the following:

∂N 1 

∂ p 1 
= 0 , 

∂N 1 

∂ p 2 
= 0 , 

∂N 1 

∂ p 1 
= 

d F L 
d p 1 

, 
∂N 1 

∂ p 2 
= 

d F R 
d p 2 

, 

∂N 2 

∂ p 1 
= αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ
(

dF L 
dp 1 

− 1 

γ ( p 1 + π0 ) 

)
, 

∂N 2 

∂ p 2 
= 

αL 

γ ( p 2 + π

= −αR 
d F R 
d p 2 

, 

∂N 3 

∂ p 1 
= −αL + αR ρ2 �v 2 

dF L 
dp 1 

, 
∂N 3 

∂ p 2 
= αR + αR �v 2 �v 

dG R 

dp 2 
+ αR ρ2 ( �

∂N 3 

∂ p 1 
= −αL , 

∂N 3 

∂ p 2 
= αR − αR ρ2 �v 

dF R 
d p 2 

, 

∂ N 4 

∂ p 1 
= − 1 

ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ

+ �v 1 
d F L 
d p 1 

, 

∂ N 4 
∂ p 2 

= 

γ
( γ −1 ) ρ2 

+ 

γ

( γ −1 ) ρ2 
2 

∂ G R 
∂ p 2 

[ 
( p 1 + π0 ) 

(
p 2 + π0 

p 1 + π0 

)1 /γ − ( p 2 + π0 ) 

] 
+ 

�v 2 ∂ F R ∂ p 2 
− ( p 1 + π0 ) 

( γ −1 ) ( p 2 + π0 ) ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ
, 

∂N 4 

∂ p 1 
= −�v 1 

d F L 
d p 1 

, 
∂N 4 

∂ p 2 
= −�v 2 

d F R 
d p 2 

. 

This case was realized in ( Computer Code for the Godunov Solv

The solid phase is present only to the left from the solid conta

Figs. 2 b and 18 represent the case when ᾱ is very small to the

f equations is solved: 

˜ 
 ( p 1 , p 2 , p̄ 1 ) = 0 , 

 

 

 

˜ N 1 = 

(
p 2 + π0 

p 1 + π0 

)1 /γ
δv L − αL �v 1 , 

˜ N 2 = p 2 − αL p 1 − αL p 1 + αL ρ1 �v 1 �v , 
˜ N 3 = 

( p 2 + π0 ) γ
( γ −1 ) ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ + 

1 
2 

(
δv L 2 − �v 2 1 

)
− ( p 1 + π0 ) γ

( γ −1 ) ρ1 
, 

if v 1 > v 1 , 

 

 

 

˜ N 1 = δv L − αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ
�v 1 , 

˜ N 2 = p 2 − αL p 1 − αL p 1 + αR ρ2 �v 2 �v , 
˜ N 3 = 

( p 2 + π0 ) γ
( γ −1 ) ρ2 

+ 

1 
2 

(
δv L 2 − �v 2 1 

)
− ( p 1 + π0 ) γ

( γ −1 ) ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ
, 

if v 1 < v 1 , 

here δv L = v 2 − v̄ 1 . These systems of equations are obtained from 

he Jacobian components for the system (27) are the following: 

∂ ̃  N 1 

∂ p 1 
= −
(

p 2 + π0 

p 1 + π0 

)1 /γ δv L 
γ ( p 1 + π0 ) 

+ αL 
dF L 
dp 1 

, 
∂ ̃  N 1 

∂ p 2 
= 

(
p 2 + π0 

p 1 + π0 

)1

∂ ̃  N 1 

∂ p̄ 1 
= 

(
p 2 + π0 

p 1 + π0 

)1 /γ d ̄F L 
d ̄p 1 

− αL 
d ̄F L 
d ̄p 1 

, 

∂ ̃  N 2 

∂ p 1 
= 

dF L 
dp 1 

αL ρ1 ( �v 1 − �v ) + αL 

(
dG L 

dp 1 
�v 1 �v − 1 

)
, 

∂ ̃  N 2 

∂ p 2 
= 1 +

∂ ̃  N 2 

∂ p̄ 1 
= −ᾱL + αL ρ1 �v 1 

d ̄F L 
d ̄p 1 

, 

∂ ̃ N 3 
∂ p 1 

= 

γ
( γ −1 ) ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ −1 −
(

p 1 + π0 

p 2 + π0 

)1 /γ γ ( p 2 + π0 ) 

( γ −1 ) ρ2 
1 

d G L 
d p 1 

+ 

 

( p 1 + π0 ) γ

( γ −1 ) ρ2 
1 

d G L 
d p 1 

− γ
( γ −1 ) ρ1 

+ �v 1 d F L d p 1 
, 

∂ ̃  N 3 

∂ p 2 
= 

1 

ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ

+ δv L 
dF R 
dp 2 

, 
∂ ̃  N 3 

∂ p 1 
= �v 

d F L 
d p 1 

. 

The Jacobian components for the system (28) are the following:

∂ ̃  N 1 

∂ p 1 
= αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ
(

dF L 
dp 1 

− �v 1 
γ ( p 1 + π0 ) 

)
, 

∂ ̃  N 1 

∂ p 2 
= 

dF R 
dp 2 

+ αL 

(
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v L ) , 
∂ ̃  N 2 

∂ p 1 
= −αL + ρ2 

d F L 
d p 1 

�v , 

1 1 

( γ − 1 ) ρ2 

dG R 

dp 2 
, 

∂ ̃  N 3 

∂ p 1 
= �v 

d F L 
d p 1 

. 

tact 

olid phase to the left from the solid contact is the following: 

N

⎧⎪⎨
⎪⎩ (29) 

⎧⎪⎨
⎪⎩ (30) 

w  are the following: 

 

 

)1 /γ
(

�v 2 
γ ( p 2 + π0 ) 

+ 

dF R 
dp 2 

)
, 

v R 
dF R 
dp 2 

, 
∂ ̃  N 2 

∂ p 2 
= αR − ρ1 �v 

d F R 
d p 2 

, 

(
p 1 + π0 

p 2 + π0 

)1 /γ −1 
)

+ δv R 
d F L 
d p 1 

, 

 

γ �v 2 
γ ( p 2 + π0 ) 

+ αR 
dF R 
dp 2 

, 

 

�v + �v 2 ) 
)

, 

1 

− 1 ) ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ −1 

+ �v 2 
d F R 
d p 2 

, 
∂ ̃  N 1 

∂ p̄ 1 
= 

d ̄F L 
d ̄p 1 

(
1 − αL 

(
p 1 + π0 

p 2 + π0 

)1 /γ
)

, 

∂ ̃  N 2 

∂ p 1 
= −αL + ρ2 

dF L 
dp 1 

δv L , 
∂ ̃  N 2 

∂ p 2 
= 1 + 

dG R 

dp 2 
δv L �v + ρ2 

dF R 
dp 2 

( �v + δ

∂ ̃  N 3 

∂ p 1 
= − 1 

ρ1 

(
p 2 + π0 

p 1 + π0 

)1 /γ

+ �v 1 
d F L 
d p 1 

, 

∂ ̃  N 3 

∂ p 2 
= 

γ

( γ − 1 ) ρ2 

− ( p 2 + π0 ) γ

( γ − 1 ) ρ2 
2 

dG R 

dp 2 
+ δv L 

dF R 
dp 2 

−
(

p 2 + π0 

p 1 + π0 

)1 /γ −

The solid phase is present only to the right from the solid con

The system of equations for the special case of absence of the s

˜ 
 ( p 1 , p 2 , p̄ 2 ) = 0 , 

 

 

 

 

 

˜ N 1 = αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ
�v 2 − δv R , 

˜ N 2 = αR p 2 + αR p 2 − p 1 + ρ1 δv R �v , 
˜ N 3 = 

γ ( p 1 + π0 ) 
( γ −1 ) ρ1 

((
p 1 + π0 

p 2 + π0 

)1 /γ −1 − 1 

)
+ 

1 
2 

(
�v 2 2 − δv R 2 

)
, 

if v 1 > v 1 , 

 

 

 

 

 

˜ N 1 = αR �v 2 − δv R 
(

p 1 + π0 

p 2 + π0 

)1 /γ
, 

˜ N 2 = αR p 2 + αR p 2 − p 1 + αR ρ2 �v 2 �v , 
˜ N 3 = 

γ ( p 2 + π0 ) 
( γ −1 ) ρ2 

(
1 −
(

p 2 + π0 

p 1 + π0 

)1 /γ −1 
)

+ 

1 
2 

(
�v 2 2 − δv 2 R 

)
, 

if v 1 < v 1 , 

here δv R = v 1 − v̄ 2 . The Jacobian components for the system (29)

∂ ̃  N 1 

∂ p 1 
= −αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ �v 2 
γ ( p 1 + π0 ) 

+ 

dF L 
dp 1 

, 
∂ ̃  N 1 

∂ p 2 
= αR 

(
p 2 + π0

p 1 + π0

∂ ̃  N 1 

∂ p̄ 2 
= 

(
1 − αR 

(
p 2 + π0 

p 1 + π0 

)1 /γ
)

d ̄F R 
d ̄p 2 

, 

∂ ̃  N 2 

∂ p 1 
= −1 + ρ1 δv R 

dF L 
dp 1 

( δv R − �v ) + δv R �v 
dG L 

dp 1 
, 

∂ ̃  N 2 

∂ p 2 
= αR + ρ1 δ

∂ ̃  N 3 

∂ p 1 
= 

1 

( γ − 1 ) ρ1 

((
p 1 + π0 

p 2 + π0 

)1 /γ −1 

− γ

)
+ 

γ ( p 1 + π0 ) 

( γ − 1 ) ρ2 
1 

d G L 

d p 1 

(
1 −

∂ ̃  N 3 

∂ p 2 
= 

1 

ρ1 

(
p 1 + π0 

p 2 + π0 

)1 /γ

+ δv R 
dF R 
dp 2 

, 
∂ ̃  N 3 

∂ p 2 
= −�v 

d F R 
d p 2 

. 

The Jacobian components for the system (30) are the following:

∂ ̃  N 1 

∂ p 1 
= 

(
p 1 + π0 

p 2 + π0 

)1 /γ
(

dF L 
dp 1 

− δv R 
γ ( p 1 + π0 ) 

)
, 

∂ ̃  N 1 

∂ p 2 
= 

(
p 1 + π0 

p 2 + π0 

)1 /

∂ ̃  N 1 

∂ p̄ 2 
= 

((
p 1 + π0 

p 2 + π0 

)1 /γ

− αR 

)
d ̄F R 
d ̄p 2 

, 

∂ ̃  N 2 

∂ p 1 
= −1 + αR ρ2 �v 2 

dF L 
dp 1 

, 
∂ ̃  N 2 

∂ p 2 
= αR 

(
1 + 

dG R 

dp 2 
�v 2 �v + ρ2 

dF R 
dp 2 

(

∂ ̃  N 2 

∂ p̄ 2 
= ᾱR − αR ρ2 �v 

d ̄F R 
d ̄p 2 

, 

∂ ̃  N 3 

∂ p 1 
= − 1 

ρ2 

(
p 2 + π0 

p 1 + π0 

)1 /γ

+ δv R 
d F L 
d p 1 

, 

∂ ̃  N 3 

∂ p 2 
= 

γ

( γ − 1 ) ρ2 

+ 

γ ( p 2 + π0 ) 

( γ − 1 ) ρ2 
2 

∂ G R 

∂ p 2 

[(
p 2 + π0 

p 1 + π0 

)1 /γ −1 

− 1 

]
−

( γ

∂ ̃  N 3 

∂ p̄ 2 
= −�v 

d ̄F R 
d ̄p 2 

. 
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