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Abstract
Entangled quantum key distribution (QKD) is a promising way to generate pairs of
unconditionally secret keys. In this paper we review possible realizations of entanglement-based
QKD and assess their feasibility in terms of implementation complexity and provided security.
We also propose a novel active basis choice approach that enables to use only one single-photon
detector per user. The paper provides all necessary details including the required electro-optic
crystal configurations to implement such a scheme experimentally.
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1. Introduction

Quantum key distribution (QKD) is a mature and at the same
time challenging field that brings together quantum phys-
ics, cryptography, and photonics. Despite of more than two
decades-long history, the problem of building secure and yet
simple QKD systems with a clear theoretical foundation is still
far from been comprehensively solved.

The most commonly implemented QKD systems are based
on prepare-and-measure protocols, i.e. they assume interaction
between a transmitter (Alice) and a receiver (Bob) of quantum
states. An alternative approach is based on the transmission
and measurement of entangled quantum states. First such pro-
tocol was proposed by Ekert in 1991 [5]. Later it was shown [3]
that an entangled-based protocol may be entirely equivalent to
the single-photon BB84 protocol [2] from the viewpoint of the
security analysis. That means that the protocol itself may offer
information-theoretic (unconditional) key security [3, 12].

A typical implementation of entanglement-based pro-
tocol uses a spontaneous down-conversion effect to generate

∗
Author to whom any correspondence should be addressed.

entangled photon pairs. The photons from each pair are
delivered to Alice and Bob via two quantum channels. Overall,
the implementation of entanglement-based protocols is typ-
ically more complicated and expensive than for prepare-and-
measure ones. That is why most practical systems rely upon
the latter approach. At the same time, entanglement-based pro-
tocols offer a number of advantages.

The key advantage is that practically generated entangled
photon pairs are completely equivalent to their theoretic
model, while single photons in the prepare-and-measure con-
figuration are typically substituted with weak coherent pulses,
exhibiting completely different properties. Despite the con-
ventional decoy-state protocols typically provide a feasible
solution in the latter case, the system becomes significantly
more complex for both the proper implementation and the
security analysis. The desire of having a very basic security
foundation gives an advantage to the entanglement-based pro-
tocols, whose protection essentially rests on the monogamy of
entanglement [8]. No matter whether it is a theoretical concept
or a practically generated entanglement.

The present paper proposes and discusses a number of
approaches to implement entanglement-based QKD protocols
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as practical tools for key distribution. The central idea is in
the optimization of Alice’s and Bob’s receivers to make them
simpler and more practical. This is achieved by means of the
active choice of measurement bases.We also propose an active
measurement choice solution, that is both simpler and superior
in terms of the provided security.

2. Theoretic background

Typically, it is assumed that the entanglement source generates
singlet Bell states,

|Ψ0⟩=
|H⟩A|V⟩B− |V⟩A|H⟩B√

2
, (1)

which are invariant under changes of basis. This means that
regardless of the measurement basis choice the interlocutors
receive fully anti-correlatedmeasurement results, provided the
basis is the same for Alice and Bob.

At the same time, in most cases the entangled pair source
is connected to the quantum channels via optical fibers, which
transform polarization states. These local transformations of
the two subsystemsmodify the original state to a general form,
described by the vector

|ψ ⟩= 1√
2


a
b
b∗

−a∗

 , (2)

where |a|2 + |b|2 = 1 and a star denotes complex conjugation.
It is easy to see that this form covers all four Bell states as well
as their certain linear combinations.

The same polarizationmeasurements of the two subsystems
in (2) in general do not give highly correlated results. However,
there exists at least one common measurement basis for Alice
and Bob such that they get perfectly correlated outcomes.
Unfortunately, this is not enough for QKD, which requires
more than one measurement basis.

Conventional protocols may only be implemented in some
special cases when a= 0 or b= 0. In the former one, there
are only two viable options for the value of b: either b=
±i (singlet state) so any measurement basis yields a per-
fect anti-correlation, or b=±1, in which case projections on
(|H⟩+ exp(iφ)|V⟩)/

√
2 ensure an ideal correlation, and meas-

urements in |H⟩—|V⟩ basis give a perfect anti-correlation.
In the latter case any value of a is usable. If a= exp(iθ),

a perfect anti-correlation appears for projecting on (|H⟩+
exp(−iθ)|V⟩)/

√
2, while a perfect correlation is observed

when projected on cosφ |H⟩+ isinφexp(−iθ)|V⟩, where φ is
a real number.

In experimental realizations there is typically no way of
tracking polarization transformations in fibers, so a polariz-
ation controller is blindly employed to achieve required cor-
relations between Alice’s and Bob’s measurements. This pro-
cedure does not reveal the actual two-photon quantum state
at the measurement device input. Thus, the state may not be
necessary the singlet Bell state.

3. BBM92 protocol

The most straightforward protocol-level implementation of
QKD with entangled states was proposed in [3]. The pro-
tocol uses two measurement bases comprising of four states:
|H⟩, |V⟩, |D⟩= (|H⟩+ |V⟩)/

√
2 and |A⟩= (−|H⟩+ |V⟩)/

√
2.

In later publications [1, 6, 16, 18, 20, 21, 24] researchers elab-
orated on its actual experimental realization, and came up with
a certain polarizationmeasurement scheme, which wewill call
a passive basis choice. Alice and Bob carry out complete von
Neumann measurements in subspaces A and B with polariz-
ation beam splitters, while the basis is chosen randomly by a
symmetrical beamsplitter (figure 1).

The polarization beamsplitter has one input and two out-
puts, so it expands the state space: |ψ⟩ → |ψ⟩1 ⊗ |ψ⟩2. Wave-
plate only affects the second output component: |ψ⟩1 ⊗
|ψ⟩2 → |ψ⟩1 ⊗ (Û|ψ⟩2), where

Û=
1√
2

(
1 −1
1 1

)
. (3)

Therefore, a random state |ψ⟩= α|H⟩+β|V⟩ is trans-
formed in the following way:

|ψ⟩=
(
α
β

)
PBS−−→ 1√

2


α
β
α
β

 HW−−→
plate

1√
2


α
β

(α−β)/
√
2

(α+β)/
√
2

 . (4)

The squares of the absolute values of the components of the
resulting vector reflect the probabilities of measurement by the
detectors H, V, D and A.

The initial state |Ψ0⟩ (1) is converted to:

|Ψ0⟩ →
1√
2




1√
2
0
1
2
1
2


A

⊗


0
1√
2

− 1
2

1
2


B

−


0
1√
2

− 1
2

1
2


A

⊗


1√
2
0
1
2
1
2


B

 .
(5)

The resulting state allows us to calculate the probabilities of
various measurement outcomes. They are provided in table 1.

After a series of measurements, Alice and Bob discard
measurements corresponding to mismatched bases and obtain
a common key, losing half of the original sequence. One of the
interlocutors should invert the sequence to get closely match-
ing pair of keys.

An obvious disadvantage of this approach is the require-
ment of having eight single-photon detectors, whichmakes the
experimental setup expensive and much more complex than
for the conventional BB84 protocol.

Below we discuss ways of simplifying measurement cir-
cuits to reduce the number of detectors. One approach implies
an active choice of the measurement basis by means of an
electro-optic cell. Another approach is based on time multi-
plexing, which also helps to reduce the number of detectors.
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Figure 1. BBM92 circuit with a passive basis choice.
PBS—polarizing beamsplitter, SPD—single photon detector,
BS—symmetrical beamsplitter.

Table 1. Probabilities PAB of various outcomes for the initial state
|Ψ0⟩.

Alice

H–V D–A

0 1 0 1

Bob H–V 0 0 1
8

1
16

1
16

1 1
8 0 1

16
1
16

D–A 0 1
16

1
16 0 1

8

1 1
16

1
16

1
8 0

4. Active basis choice

This method was implemented in a number of previous
works [4, 7, 23]. According to it, the random selection of the
measurement basis is performed by an electro-optic crystal.
The crystal operates effectively as a polarization modulator
placed before the measurement PBS, as shown in figure 2.
Alice and Bob randomly select the modulator state to perform
measurements in two mutually unbiased bases, as required by
the BBM92 protocol.

In the case of an independent and equiprobable choice of
the crystal state for each detected photon, the scheme achieves
the same function as the passive one presented before. If the
selected bases match, the interlocutors receive a bit of the key.
Otherwise, the results of the measurements will be uncorrel-
ated and random.

There is an option to use these uncorrelated and, thus,
meaningless measurement results to generate random bits for
modulator control. Its practical implementation may rely upon
a simple deterministic randomness extractor [9].

As an electro-optic crystal acts effectively as a variable
phase plate, its axis orientation plays a crucial role for achiev-
ing the goal of basis shifting. To be able to switch to a mutually
unbiased basis, the waveplate axis should be oriented at 45◦ to
the principal axes of the PBS. The corresponding rotation mat-
rix can then be written as

Ûϕ =
1
2

(
eiϕ + 1 eiϕ − 1
eiϕ − 1 eiϕ + 1

)
. (6)

Figure 2. Generic setup for BBM92 with the active basis choice.
PM—polarization modulator.

If we assume that no voltage on the electro-optic polar-
ization modulator makes no polarization transformation, to
achieve measurements in the circular basis |R⟩− |L⟩, we need
a phase shift of π/2, which transforms |H⟩ and |V⟩ into

|R⟩= 1
2

(
i+ 1
i− 1

)
, |L⟩= 1

2

(
i− 1
i+ 1

)
. (7)

The initial state (1), depending on the combinations of
voltages on the modulators, will be transformed as follows:

ϕA = 0 [H–V], ϕB = 0 [H–V]

|Ψ0⟩ → |χ⟩= 1√
2

((
1
0

)
A

⊗
(
0
1

)
B

−
(
0
1

)
A

⊗
(
1
0

)
B

)
. (8)

The probabilities of measuring specific selected bits for
Alice and Bob (that is, the probability of receiving clicks from
detectors in specific detection windows) are:

P(A= 0,B= 0) = |⟨HAHB|χ⟩|2 = 0

P(A= 0,B= 1) = |⟨HAVB|χ⟩|2 =
1
2

P(A= 1,B= 0) = |⟨VAHB|χ⟩|2 =
1
2

P(A= 1,B= 1) = |⟨VAVB|χ⟩|2 = 0.

(9)

Similar equations can be written for the case when Alice
and Bob choose different bases:

ϕA = π/2 [R–L], ϕB = 0 [H–V]

|χ⟩= 1

2
√
2

((
i+ 1
i− 1

)
A

⊗
(
0
1

)
B

−
(
i− 1
i+ 1

)
A

⊗
(
1
0

)
B

)
.

(10)
In this case

P(A= 0,B= 0) = |⟨HAHB|χ⟩|2 =
|i− 1|2

8
=

1
4
. (11)

Other probabilities are calculated in a similar way:

P(A= 0,B= 0) = P(A= 0,B= 1) = P(A= 1,B= 0)

= P(A= 1,B= 1) =
1
4
. (12)
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From the properties of state (1), it can be seen that for the
other two options of bases choice, probabilities will be similar
to (9) and (12). Since all four options for choosing a phase on
modulators are equally likely, the detection probabilities will
correspond to table 1.

Here we summarize the possible geometry of the electro-
optic crystal and the applied electrical field. We will assume
a single-axis crystal that changes optical phase by means of
the Pockels effect. The most reliable option is to position the
crystal such as the radiation propagates along its axis, so that
there is no residual birefringence when the voltage is off. In
the opposite case, the large birefringence would lead to detri-
mental polarization fluctuations due to environmental effects.
A crystal in this configuration is typically called Z-cut, as the
light propagates along the crystal axis Z.

One of the best electro-optic materials is Lithium Niobate
LiNbO3. So we further assume that we use it as a detailed
example. As shown in the appendix the presence of a voltage
U applied along H or V axis (assuming Z is horizontal), the
crystal develops a birefringence with the fast/slow axes at 45◦

to H and V. The overall relative phase shift between the fast
and slow axes equals

ϕ =
2πLn3or22

λd
U, (13)

where:
L—crystal length,
no—refractive index of ordinary ray,
r22—element of relative dielectric tensor,
λ—wavelength,
d—crystal width between the electrodes.

To estimate the required voltage we assume that LiNbO3

crystal size is 3× 3× 20mm3 and its long side is along its axis.
The working wavelength is 810 nm. Taking other paramet-
ers from [22] we can calculate the ratio U/ϕ, which appears
to be 0.29 kV. Therefore, for the implementation of BBM92
protocol with the active basis choice one needs a voltage of
Uπ/2 ≈ 0.45 kV.

5. Time-multiplexing

Onemoreway of reducing the number of single-photon detect-
ors in the scheme is based on time multiplexing. The general
idea is to replace spatial modes that are registered by separ-
ate detectors with temporal modes that can be measured by
the same detector, but in separate time windows. It has been
used in experimental realizations of prepare-and-measure pro-
tocols [14, 15]. Although, its use for entangled-based protocols
is a bit more involved, due to the lack of an external synchron-
ization signal, it has been also proposed before in [17].

This approach is compatible with both passive [17] and
active (see figure 3) basis choice types. The problem of the
lack of an external synchronization can be in general solved
by using incompatible time delays at Alice’s and Bob’s sites.
Otherwise, the observed coincidence counts will not be able
to convey bit value information to the users.

Figure 3. Time-multiplexing realization of the entanglement-based
QKD with an active basis choice.

Despite the relative simplicity and the ability to oper-
ate with only one single-photon detector per user, time-
multiplexing scheme is inherently susceptible to a time-shift
attack, described for prepare-and-measure protocols [19]. The
ability of Eve to control the arrival times of quantum states to
the receiver stations, thus, creates a loophole, compromising
the key security. As the scheme is hardwired in such a way that
different delays are interpreted as different measurement res-
ults, there is inherently no workaround against such an attack.

Therefore, the time-multiplexing-based approach cannot be
considered as a promising solution to the problem of reduction
the number of detectors.

6. Active projective measurement choice

The studied above active basis choice approach can be further
extended to the active choice of not just themeasurement basis,
but rather the active choice of a projective measurement. In
this way the scheme needs only one single-photon detector per
user. The basic structure of its realization is shown in figure 4.
The polarization modulator provides the required polarization
transformations and is followed with a fixed polarizer and a
single-photon detector.

For example, in order to implement BBM92 protocol, the
interlocutors not only choose a basis ([H–V] or [R–L]) but also
a state by randomly choosing between four polarization shifts
Ûϕ:

Û0◦ =

(
1 0
0 1

)
Û180◦ =

(
0 1
1 0

)
Û90◦ =

1
2

(
i+ 1 i− 1
i− 1 i+ 1

)
Û270◦ =

1
2

(
−i+ 1 −i− 1
−i− 1 −i+ 1

)
.

(14)

The action of the polarizers located after the electro-optical
crystals is described by the projectors:

P̂H =

(
1 0
0 0

)
P̂V =

(
0 0
0 1

)
(15)

PAB =
∣∣∣〈HV∣∣∣ÛϕA P̂H⊗ ÛϕB P̂V

∣∣∣Ψ0

〉∣∣∣2. (16)

As in the conventional realization of BBM92, the inter-
locutors discard measurement results corresponding to differ-
ent bases and keep a bit sequence from matching bases. For
example, measurement results at ϕ = 0◦ or 90◦ are mapped to
the bit value of 0, and ϕ = 180◦ or 270◦ to the value of 1.

4
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Figure 4. Entanglement-based QKD with the active choice of the
projective measurement. PH and PV are polarizers oriented along H
and V axes.

Table 2. Probabilities of measurement outcomes for the scheme
with the active choice of a projective measurement.

Alice

H–V R–L

Phase Shift 0 180 90 270

Bob H–V 0 1
8 0 1

16
1
16

180 0 1
8

1
16

1
16

R–L 90 1
16

1
16

1
8 0

270 1
16

1
16 0 1

8

Table 2 shows that the probability distribution is similar
to the previous schemes. At the same time, the scheme does
not open any loopholes with respect with the two-detector act-
ive basis choice version. On the contrary, as there is only one
detector per user, the detectormismatch vulnerability [13] can-
not be exploited in this scenario.

Further, the scheme may be quickly modified to the use of
more than two measurement bases. It could be done with a
sole change of the electronic drivers for polarization modulat-
ors to allow for more than 4 different voltages. A scheme is
thus compatible with protocols, based on more than four geo-
metrically uniform states [10, 11].

7. Conclusions

We have studied possible ways of implementing polarization
entanglement-based QKD, comparing the conventional pass-
ive scheme with a number of alternatives. We proposed an act-
ive measurement choice approach, which requires only one
single-photon detector per user in contrast to 4 in the passive
scheme. Unlike the time-multiplexing detector scheme, this
solution does not degrade system security, and on the con-
trary makes it better by eliminating the threat of the detector-
mismatch attack.
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Appendix. Electro-optic effect

Consider a lithium niobate crystal cut along the optical Z axis.
Light passes along the normal to the xy plane, so there is no

Figure 5. Mutual arrangement of tension and electric induction
vectors.

birefringence in the absence of an external electric field, nx =
ny = no.

When the field E⃗ ↑↑ e⃗x is applied, a linear electro-optic
response is observed. Thus, the modified refractive index
ellipsoid becomes (

1
n2ij

+ rijkEk

)
xjxj = 1. (17)

For LiNbO3 crystal, the tensor r has the form [22]:

r=


0 r12 r13
0 r22 r23
0 0 r33
0 r42 0
r51 0 0
r61 0 0

=


0 −r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
−r22 0 0

 . (18)

Wave vector equation

It is convenient to use the following notation, where the key
vectors are decomposed onto the amplitudes and correspond-
ing unit vectors:

E⃗= e⃗EE B⃗= e⃗BB D⃗= ϵ̂⃗eEE, (19)

where |⃗eE|= |⃗eB|= 1. This geometry is shown in figure 5.
From Maxwell’s equations, the equation relating the field

E⃗ and the wave vector k⃗ is:

{
[⃗k× e⃗E] = ω

c
B
E e⃗B

[⃗k× e⃗B] = ω
c
E
B ϵ̂⃗eE

=⇒ k2 cosθ =
ω2

c2
|ϵ̂⃗eE|. (20)

5
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Figure 6. Position of symmetry axes (⃗ex, e⃗y) and optical axes
(⃗ex ′ , e⃗y ′ ) of the crystal.

Optical axes arrangement

According to the equation (20):

E⃗ ∈ {⃗ezD⃗} D⃗ ∈ {⃗ex⃗ey}. (21)

When the field is turned on, the crystal becomes biaxial,
and the correction to the permittivity tensor equals

ϵ̂−1 =


1
n2o

−r22Ex r51Ex
−r22Ex 1

n2o
0

r51Ex 0 1
n2e

 . (22)

The refraction ellipsoid (17) converts to

x2

n2x
+
y2

n2y
+
z2

n2z
+ 2r51Ex− 2r22xyEx = 1. (23)

From the relative position of the vectors E⃗ and D⃗ one can
find the following relations:

(E⃗, [⃗k× D⃗]) = (ϵ̂−1D⃗, [⃗ez× D⃗]) = 0 (24)

e⃗D = dx⃗ex+ dy⃗ey [⃗ez× D⃗] = dy⃗ex− dx⃗ey. (25)

Equations (24) and (25) imply the polarization condition

dy(ϵ
−1
xx dx+ ϵ−1

xy dy) = dx(ϵ
−1
yx dx+ ϵ−1

yy dy)

=⇒ dx =±dy =± 1√
2
. (26)

Consequently, the new directions of polarization corres-
pond to the e⃗x ′ e⃗y ′ axes rotated by 45◦ with respect to
e⃗x⃗ey (figure 6).

Induced phase

Unit vectors e⃗E and e⃗D and the angle between them can be
expressed as follows:

e⃗E =
ϵ̂−1⃗eD
|ϵ̂−1⃗eD|

=⇒ |ϵ̂⃗eE|=
1

|ϵ̂−1⃗eD|

cosθ = (⃗eE, e⃗D) =
(ϵ̂−1⃗eD, e⃗D)
|ϵ̂−1⃗eD|

.

(27)

Substituting these expressions into equation (20) we obtain
two solutions k1,k2:

k2 =
ω2

c2
1

(ϵ̂−1⃗eD, e⃗D)
. (28)

(ϵ̂−1e⃗D, e⃗D) = (ϵ−1
xx dx+ ϵ−1

xy dy)dx+(ϵ−1
xy dx+ ϵ−1

yy dy)dy

=
1
n2o

± r22Ex (29)

k1,2 =
ω

c
1√

1
n2o
± r22Ex

≈ ω

c
no

(
1± 1

2
n2or22Ex

)
. (30)

Therefore, a crystal of length L creates a phase difference
between the fast and slow axes equal to:

φ = L(k1 − k2)≈ L
ω

c
n3or22Ex. (31)

Phase shift

Let us now consider propagation of a linearly polarized light
through the crystal. Denote the input polarization vector

E⃗=

(
α
β

)
. (32)

The transition to the coordinates of the optical axes of the
crystal e⃗x, e⃗y is carried out using the rotation matrix M̂, while
the action of the crystal itself is described by the matrix Λϕ:

M̂=
1√
2

(
1 1
−1 1

)
, Λ̂ϕ =

(
eiϕ 0
0 1

)
. (33)

After passing through the crystal, the initial vector (32)
transforms into:

E⃗→ M̂−1Λϕ M̂E⃗=
1
2

(
eiϕ + 1 eiϕ − 1
eiϕ − 1 eiϕ + 1

)(
α
β

)
. (34)

A simple check shows that for the states |H⟩ (α= 1, β = 0)
and |V⟩ (α= 0, β= 1) the phase shift π gives a linear polariz-
ation orthogonal to the input, while ϕ =±π/2 gives a circular
polarization.

6
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