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A B S T R A C T   

In ring-opening polymerization (ROP) of cyclic esters, the rational design of the catalyst is generally applied to 
solve the task of providing polyester biocompatibility (non-toxicity) and the problem of copolymer homogeneity 
when using comonomers of different nature (e. g. lactones and lactides). In the present work, we report the 
synthesis of aluminum and titanium complexes, based on substituted 2,6-bis(2-hydroxyphenyl)pyridine pro- 
ligands 1 and 2. It was found that the structure of the pro-ligand drastically affect the structure of the reac-
tion product. Pro-ligand 2 with a bulky tert‑butyl group leads to the monomeric complexes 6 (LAlMe) and 7 (LTi 
(OiPr)2), while the ligands with less bulky groups lead to the oligomeric Al-containing compounds 3 and 4, and in 
the case of Ti bis-ligand complex 5 is formed. Complexes 6 (in presence of BnOH) and 7 turned out to be active in 
the ROP of ε-caprolactone and L-lactide and gave PCL and PLA with high molecular masses. Compound 6 was an 
effective initiator of copolymerization of ε-caprolactone and L-lactide which led to statistical copolymer poly(LA- 
stat-CL) with comonomer subunits ratio of 1:1.   

1. Introduction 

One of the main and still completely unresolved problems of modern 
technologically advanced world is environmental pollution with com-
modity plastics waste [1]. It should be noted that a significant part of the 
produced commodity polymers is used for packaging. Two classes of 
biodegradable polymers are usually distinguished: natural polymers, 
such as polysaccharides, polypeptides and polyhydroxyalkanoates etc. 
as well as synthetic polymers, among which aliphatic polyesters, such as 
poly-L-lactide (PLA) and poly-ε-caprolactone (PCL), attract special 
attention due to their relative synthetic availability and properties 
suitable for the manufacture of products from them. The most 
commonly used approach to the synthesis of PLA and PCL is a 
ring-opening polymerization (ROP) of the corresponding cyclic esters, 
respectively lactide (LA) and ε-caprolactone (ε-CL), in the presence of a 

metal complex as an initiator [2–9]. In industry, tin(II) 
bis-2-ethylhexanoate (tin octoate) in the presence of alcohol is a 
preferred catalytic system for the bulk polymerization due to its high 
stability during polymerization process and adequate activity at high 
temperature, which makes it possible to obtain target polymers with the 
required molecular weight in a controlled manner [10,11]. However, 
conventional drawbacks of tin octoate are caused by potential toxicity of 
tin compounds (although it is known that toxic tin compounds are 
mainly alkyl derivatives of Sn(IV) [12]), as well as relatively low activity 
of tin octoate, which requires a high temperature of the polymerization 
process. In addition to being used in packaging, biodegradable polymers 
also find biomedical applications as a materials for controlled drug de-
livery, slow-release medication administration, tissue engineering scaf-
folds, bone surgery and orthopedics, formation of artificial organs, nerve 
regeneration and wound healing [13,14]. Due to higher requirements of 
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biomedical materials, the development of new initiators based on 
non-toxic metals, which produce high-molecular PLA and PCL in a 
controlled manner, narrow molecular weight distribution due to the 
absence of side reactions like transesterification, remains relevant. 
Another important task in ROP is a search for new initiators that are 
active in the synthesis of copolymers and allow to obtain copolymers 
with a statistical distribution of comonomer subunits. The one of the 
most important copolymers of LA is poly(lactide-co-caprolactone), poly 
(LA-CL). Two these homopolymers have contrasting physical and ther-
mal properties: PCL exhibits good elasticity and permeability but poor 
mechanical characteristics (toughness), which is the opposite to PLA 
[15]. The preparation of a statistical copolymer poly(LA-stat-CL) may 
lead to biodegradable materials with improved properties. At the same 
time the copolymerization of LA and ε-CL, in most cases, results in the 
formation of block- or gradient copolymers due to the different chain 
propagation rates for these monomers on the most of studied initiators. 
It is noteworthy that ε-CL reacts typically faster than LA in their 
respective homopolymerizations, while copolymerization of both 
monomers often leads to the preferential consumption of LA over ε-CL 
[2,15–18]. 

The ligand design has a decisive influence on the activity of the 
complex in the ROP of cyclic esters and on the properties of the resulting 
polymers, provided that the metal is in principle active in such processes 
[19–23]. During this work, we focused our attention on aluminum and 
titanium complexes, whose compounds had previously demonstrated 
activity in ROP, and the metals themselves are traditionally considered 
as low-toxic. In search of a ligand system for Al and Ti that is suitable for 
ROP, we turned our attention to polydentate ligands based on pyridine 
containing two aromatic hydroxyl groups (1, 2, Fig. 1). We believed that 
this ligand forms sufficiently strong metal-phenolic oxygen bonds, 
which should increase the stability of the complex under the ROP con-
ditions, and the structure of the ligand on the one hand should allow to 
preserve the monomeric structure of the complex, and on the other 
hand- to leave enough space for the attack of the metal atom by the 
monomer during polymerization. According to the literature data this 
type ligands has been used for the preparation of Ti [24–26], Zr [24–26], 
Hf [25,26], V [26,27], Ta [28], Mo [29,30], W [29], Ir [31], Cu [32], Zn 
[32], Al [33,35], Y [34,35], Sc [34], La [34], Ge [36], Sn [36] de-
rivatives, however, these complexes were not used as initiators in the 
ROP, except Y [34,35], Sc [34], La [34] and Al complexes [33,35] 

(Fig. 1). 
As a part of our program [36–39] to prepare novel initiators for ROP 

based on different type ligands and to study the influence of ligand 
structure on complexes geometry, in the present work we report the 
synthesis of Al and Ti complexes based on 2,6-bis(2-hydroxyphenyl)pyr-
idines and the study of their activity in ROP. 

2. Results and discussion 

Two pro-ligands 1 and 2 which differ in the steric volume of sub-
stituents (H and t-Bu, respectively) in the ortho-positions to the hydroxyl 
group, that is, in the immediate vicinity of the metal atom, were used for 
preparation of the complexes. It has recently been shown in the chem-
istry of tetrylenes, based on these ligands, that the steric volume of the 
ortho-substituent has a fundamental effect on the structure of the 
resulting product [34]. Reaction of pro-ligand 1 with AlMe3 (1:1 stoi-
chiometry) afforded a mixture of Al-containing compounds, among 
which, the complexes containing three and four aluminum atoms (3 =
Al2L3, L – dianion of ligand 1, m/z = 1149 (3 + H+); 4 (MeAl3L4, L – 
dianion of ligand 1, m/z = 1542 (4 + H+)) were detected by 
mass-spectrometry. The expected heteroleptic titanium complex con-
taining two isopropoxy groups was also not formed. In the reaction of 
pro-ligand 1 with titanium (IV) isopropoxide in a ratio of 1:1, only the 
homoleptic bis-ligand complex 5 was isolated. On the contrary, the re-
action of pro-ligand 2 containing a bulky tert‑butyl substituent in the 
ortho-positions to OH groups with AlMe3 or Ti(OiPr)4 produced the ex-
pected heteroleptic complexes 6 and 7 with good yields (Scheme 1). 

The formation of the complexes 5–7 was unambiguously proven by 
1H, 13C NMR spectroscopy as well as by elemental analysis. The com-
pounds 5–7 possess a symmetrical structure, since the phenolic rings in 
the ligands are spectrally identical. The crystal structures of 5 and 6 were 
determined by single-crystal X-ray diffraction. The molecular structure 
of 5 is shown in Fig. 2. Selected bond lengths and angles of 5 are listed in 
Fig. 2 caption. 

The coordination polyhedron of titanium atom in 5 represents a 
distorted octahedron. The compound 5 exhibits trans-disposition of two 
nitrogen atoms at Ti atom. This is one from two possible trans-isomers, 
where two oxygen atoms of one ligand also occupy the trans-positions in 
octahedral environment of Ti atom. A similar arrangement of atoms in 
the octahedron was found in the previously studied derivatives of 

Fig. 1. Pyridine-containing metal complexes known to date.  
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aminobis(phenols) [PrnN(CH2–o-Ar–O)2]Ti[(O–o-Ar’–CH2)2NR] [39]. 
Notably, in related bis-ligand complexes based on dialkanolamines, two 
nitrogen atoms usually occupy cis-positions in the octahedral environ-
ment of the titanium atom [40]. The Ti–N distances in 5 are slightly 
shorter than those previously found in [PrnN(CH2–o-Ar–O)2]Ti 
[(O–o-Ar’–CH2)2NR] [2.248(2)–2.308(4) Å] [40] and considerably 
shorter than those, previously found in bis-ligand complexes based on 

dialkanolamines which vary in the range 2.310(2)–2.471(3) Å [41]. This 
difference is probably explained by higher polarity of Ti–O bonds in 
phenolic species which leads to depletion of electron density at titanium 
center. The Ti–O distances in 5 are very close to those previously found 
in [PrnN(CH2–o-Ar–O)2]Ti[(O–o-Ar’–CH2)2NR] [1.865(2)– 1.913(3) Å] 
[40]. 

The molecular structure of 6 is shown in Fig. 3. Selected bond lengths 

Scheme 1. Synthesis of complexes 3–7.  

Fig. 2. Molecular structure of 5. Hydrogen atoms and solvate molecule of chloroform omitted for clarity. Selected bond lengths (Å) and angles (deg) for 5: Ti(1)-O(2) 
1.8868(16), Ti(1)-O(2A) 1.8868(16), Ti(1)-O(1) 1.8894(16), Ti(1)-O(1A) 1.8895(16); Ti(1)-N(1) 2.2096(19), Ti(1)-N(1A) 2.2097(19); O(2)-Ti(1)-O(2A) 95.12(10), 
O(2)-Ti(1)-O(1) 163.98(7), O(2)-Ti(1)-O(1A) 88.96(7), O(1А)-Ti(1)-O(1) 91.34(10), O(2)-Ti(1)-N(1) 81.99(7), O(2)-Ti(1)-N(1A) 95.09(7), O(1)-Ti(1)-N(1A) 100.82 
(7), O(1)-Ti(1)-N(1) 82.23(7), N(1)-Ti(1)-N(1А) 175.69(9). 
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and angles of 6 are listed in Fig. 3 caption. 
Compounds 6 and 7 were tested as catalysts towards the ROP of ε-CL 

and L-LA as well as in copolymerization of these cyclic esters. The po-
lymerizations of ε-CL in the presence of 6 (with BnOH, ratio 6: 
BnOH=1:1) were conducted in bulk and in toluene solution both at 
100 ◦C; and in the presence of 7 (without BnOH) under solvent-free 
conditions at 100 ◦C. Polymerizations of L-LA in the presence of 6 
(with BnOH used as a co-initiator, ratio 6:BnOH=1:1) were conducted in 
bulk and in toluene solution both at 100 ◦C; and in the presence of 7 
(without BnOH) in toluene solution at 100 ◦C. The copolymerization was 

investigated in the presence of 6 in bulk at 150 ◦C and in toluene solution 
at 100 ◦C in the presence of BnOH. The polymerizations were monitored 
by taking aliquots at regular time intervals, which were analysed using 
1H NMR spectroscopy to determine the cyclic ester conversion, and by 
GPC (gel permeation chromatography) to determine the number 
average molecular weight (Mn) and molecular weight distribution (Mw/ 
Mn). The polymerization results are summarized in Table 1. 

The Al atom in 6 is four-coordinated by the tridentate ligand (dianion 
of 2) and the methyl group in a distorted-tetrahedral geometry (angles 
around Al 95.71(9)− 117.51(11)◦). The Al− O(phenolate) bond lengths 

Fig. 3. Molecular structure of 6. Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg) for 6: Al(1)-O(2) 1.747(2); Al(1)-O(1) 1.743(2); Al 
(1)-N(1) 1.910(2); Al(1)-C(35) 1.930(3); O(2)-Al(1)-N(1) 95.71(9); O(2)-Al(1)-C(35) 116.60(11); O(2)-Al(1)-O(1) 111.17(9); O(1)-Al(1)-N(1) 96.53(9); O(1)-Al(1)-C 
(35) 117.51(11); N(1)-Al(1)-C(35) 115.53(11). 

Table 1 
Polymerization results for catalysts 6 and 7.  

Entry Catalyst, [cat] [M]0/[cat]/[BnOH]0 t, (h) Conversiond, [%] Mn
e 

(theor), [g/mol] Mn
f 

(exp), [g/mol] Mw/Mn 

1 6a 300(ε-CL):1:1 0.25 96 – – – 
2 0.75 98 – – – 
3 2 >99 34,000 36,670 1.60 
4 6b 300(ε-CL):1:1 0.25 69  – – 
5 0.75 84  – – 
6 2 >99 34,000 35,939 1.45 
7 6a 300(L-LA):1:1 1 10  – – 
8 6 24  – – 
9 24 63 27,347 27,308 1.11 
10 6b 300(L-LA):1:1 1 26  – – 
11 6 65  – – 
12 24 >99 42,973 68,848 1.16 
13 6b 100(ε-CL):100(L-LA):1:1 1 ε-CL 2 %, L-LA 9 %  – – 
14 3 ε-CL 3 %, L-LA 21 %  – – 
15 24 ε-CL 20 %, L-LA 76 % 11,280 13,800, 

copolymer composition: 22 % CL, 78 % LA 
1.25 

16 6c 100(ε-CL):100(L-LA):1:1 120 52 % (ε-Cl), 60 % (L-LA) 14,676 20,300, 
copolymer composition: 50 % CL, 50 % LA 

1.49 

17 7a 300(ε-CL):1 0.25 17  - - 
18 0.5 45  - - 
19 1 62  - - 
20 2 78  - - 
21 22 >99 33,900 25,938 1.58 
22 7b 300(L-LA):1 1 11  - - 
23 2 24  - - 
24 6 38  - - 
25 24 74 31,970 19,001 1.40  

a Polymerization in bulk: 100 ◦С. 
b Polymerization in toluene solution (5 ml), 100◦С, [M] = 1 mol/l. 
c Polymerization in bulk: 150◦С. 
d According to 1H NMR data. eMn(theor) =Mw(LA) × [LA]o × (conversion) and Mn (theor) = Mw(LA) × [LA]o/[BnOH] × (conversion) + Mw(BnOH) with addition of 

alcohol; Mn(theor) =Mw(CL) × [CL]o × (conversion) and Mn(theor) =Mw(CL) × [CL]o × (conversion) +Mw(BnOH) with addition of alcohol. 
e The molecular weights and the Mw/Mn of the polymers were determined by GPC relative to PMMA standards and multiplied by a correction factor of 0.58 for 

polylactide and 0.56 polycaprolactone. 
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in 6 are similar to those observed for related tetracoordinated Al ami-
nobis(phenolate) complexes (1.714(4)− 1.7493(7) Å) [39–41] and pyr-
idinebis(naphtholate) complex (1.745(1) and 1.759(1) Å) [33]. The 
distances Al–C and Al–N in 6 are also close to those found previously in 
closely related compounds: Al–C aminobis(phenolate) complexes (1.919 
(3)− 1.9465(11) Å) [42–44], pyridinebis(naphtholate) complex (1.922 
(2) Å) [33]; Al–N aminobis(phenolate) complexes (1.985(4)− 2.0101(8) 
Å) [42–44], pyridinebis(naphtholate) complex (1.9394(15) Å) [33]. It 
should be noted that some shortening of the length of the Al–N bond in 6 
in comparison with the aminobis(phenolate) complexes is apparently 
associated with a more rigid structure of the pyridine-containing ligand. 

Aluminum complex 6 is active for the polymerization of ε-capro-
lactone both in bulck and in solution. Compound 6 produces PCL in 
presence of BnOH (1:1) with high molecular mass in controlling manner. 
The activity and the characteristics of the isolated polymer are close to 
those previously found for aluminum aminobis(phenolate) complexes 
[43,44]. The titanium complex 7 proved to be less active, but also 
producing PCL with a high molecular weight. In this case, the reaction 
occurs without the addition of benzyl alcohol, since the isoproxide group 
bound with the titanium atom in compound 7 has a good migrating 
ability, unlike the alkyl group in 6. Both prepared complexes were also 
tested in ROP of L-LA and demonstrated slightly lower activity compared 
to that for ε-CL (Table 1). Previously it was found that ε-CL usually has a 
higher polymerization rate in its respective homopolymerizations than 
L-LA [15]. 

The effectiveness of the compound 6 as a catalyst in copolymeriza-
tion of L-LA and ε-CL has been also demonstrated. It was found that the 
initiator 6 has an excellent ability to produce a statistical copolymer poly 
(LA-stat-CL) in bulk at 150◦С with high molecular mass and low dis-
persity, which is comparable to the best initiators described in the 
literature [15]. It should be noted that at 100 ◦С in toluene solution the 
conversion of L-LA becomes noticeably higher than the conversion of 
ε-CL. 

The microstructure of prepared poly(LA-stat-CL) has been analyzed 
by 13C NMR spectroscopy. The 13С NMR spectrum of the carbonyl region 
from 169 to 174 ppm is shown in Fig. 4. Eight resonances of triads were 
found, which were assigned according to the literature data [45], with 
the same integral intensity, which indicates the statistical nature of the 
copolymer. The average block lengths (Le

LA = 1.49 and Le
CL = 1.65) were 

calculated following the method reported previously [46]. It should be 
noted that the signal at 171 ppm, indicating transesterification reactions 
during polymerization, was not detected [47,48]. Thus, the mechanism 
of formation of a random copolymer differs from that found for tin 
octoate (transesterification leads to a redistribution of monomer se-
quences [47]), and represents the sequential addition of monomers to 
one polymer chain, which is consistent with recent mechanistic studies 
of the copolymerization of LA and ε-CL [49,50] 

3. Materials and methods 

All reactions with air- and/or water-sensitive compounds were per-
formed under a dry, oxygen-free argon atmosphere using standard 
Schlenk techniques. Solvents were dried by standard methods and 
distilled prior to use: toluene, n-hexane and benzene were refluxed over 
Na and distilled; benzyl alcohol was distilled under vacuum. Starting 
materials were synthesized according to the literature procedures: 6,6′- 
(pyridine-2,6-diyl)bis(5-methylphenol) (1) [36], 6,6′-(4-phenyl-
pyridine-2,6-diyl)bis(2,4-di‑tert-butylphenol) (2) [51]. AlMe3 (2.0 M 
solution in toluene) and Ti(OiPr)4 (Sigma-Aldrich, St. Louis, MO, USA) 
were used as purchased. L-Lactide was recrystallized from toluene and 
sublimed in a vacuum, ε-caprolactone was distilled over CaH2. CDCl3 
(dried with CaH2) was obtained from Deutero GmbH (Kastellaun, Ger-
many). 1H (400.13 MHz) and 13C (100.61 MHz) NMR spectra were 
recorded on a Bruker Avance 400 (Bruker Corporation, Billerica, MS, 
USA) or Agilent 400-MR (Agilent Technologies, Santa Clara, CA, USA) 
spectrometers at room temperature (if otherwise stated). 1H and 13C 

Fig. 4. 13С NMR spectrum of carbonyl region of copolymer poly(LA-stat-CL) (Table 1, N◦ 16).  
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chemical shifts are reported in ppm relative to Me4Si as internal stan-
dard. Elemental analysis was performed using EuroEA-3000 instrument 
(EuroVector, Pavia, Italy). Gel permeation chromatography (GPC) was 
carried out on an HPLC chromatograph (column phenogel 104Å, 
refractive index detector), solvent - THF, flow rate - 1 ml/min, sample 
concentration - 1 %, sample volume - 200 μL. Calibration of the system 
was carried out by PMMA standards. The study of substances by mass 
spectrometry with MALDI-TOF ionization was performed on a Bruker 
Autoflex instrument (Bruker Corporation, Billerica, MS, USA). 

Synthesis of complexes 3 and 4. 2 M solution of AlMe3 in toluene 
(0.64 mL, 1.27 mmol) was added dropwise to the solution of ligand 1 
(0.4673 g, 1.27 mmol) in toluene (20 mL) at –30 ◦C in an argon atmo-
sphere. The reaction mixture was slowly warmed-up to room tempera-
ture and stirred for 1 day. Then the solvent was removed in vacuo, 
diethyl ether was added and the mixture was stirred for 30 min. The 
residue was filtered off, washed with ether and dried in vacuo. MALDI- 
TOF-MS 3 Al2L3, where L – ligand dianion 1 m/z = 1149 and 4 (Al3L4, 
where L – ligand dianion 4, m/z = 1542). 

Synthesis of complex 5. The solution of Ti(OiPr)4 (0.49 g, 1.73 mmol) 
in toluene (10 mL) was added dropwise to the solution of ligand 1 (0.55 
g, 1.73 mmol) in toluene (10 mL) at 20 ◦C in an argon atmosphere. The 
solution was stirred for 15 h. A yellow precipitate was formed 30 min 
after the start of the reaction. Then the solvent was removed in vacuo. 
The solid residue was recrystallized from the n-hexane/toluene mixture. 
Compound 5 (0.41 g, 76 %) was obtained as a white powder. 

1H NMR (CDCl3), δ: 8.10 (s, 4H, Ar), 7.81 (d, J = 7.8 Hz, 4H, Ar), 
7.59 (m, 10H, Ar), 6.66 (d, J = 8.3 Hz, 4H, Ar), 5.71 (d, J = 8.3 Hz, 4H, 
Ar), 2.39 (s, 12H, СН3). 

13C NMR (CDCl3), δ: 159.34, 154.61, 151.55, 138.14, 131.44, 
129.91, 129.50, 129.18, 128.28, 127.53, 124.65, 121.30, 116.45 (Ar), 
21.08 (СН3). 

Found (%): C 77.28, H 5.01, N 3.75. C50H38TiN2O4. Calculated (%): 
C 77.12, H 4.92, N 3.60. 

Synthesis of complex 6. 2 M solution of AlMe3 in toluene (0.5 mL, 1 
mmol) was added dropwise to the solution of ligand 2 (0.49 g, 1 mmol) 
in toluene (10 mL) at –30 ◦C in an argon atmosphere. The reaction 
mixture was slowly warmed-up to room temperature and stirred for 1 
day. Then the solvent was removed in vacuo. The solid residue was 
recrystallized from the n-hexane/toluene mixture. Compound 6 (0.40 g, 
72 %) was obtained as a white powder. 

1H NMR (CDCl3), δ: 8.03 (t, J = 8.1 Hz, 1H, Ar). 7.65 (d, J = 7.8 Hz, 
2H, Ar), 7.50 (d, J = 2.3 Hz, 2H, Ar), 7.45 (d, J = 2.3 Hz, 2H, Ar), 1.51 (s, 
18H, C(CH3)3), 1.37 (s, 18H, C(CH3)3), − 0.94 (s, 3Н, AlCH3). 

13C NMR (CDCl3), δ: 155.91, 155.42, 141.44, 141.29, 140.82, 
128.14, 123.33, 122.19, 121.48 (Ar), 35.77 (C(CH3)3), 34.52 (C(CH3)3), 
31.74 (C(CH3)3), 29.95 (C(CH3)3), 

Found (%): C 77.38, H 8.79, N 2.65. C34H46AlNO2. Calculated (%): C 
77.48, H 8.87, N 2.73. 

Synthesis of complex 7. The solution of Ti(OiPr)4 (0.30 г, 1.06 mmol) 
in toluene (10 mL) was added dropwise to the solution of ligand 2 (0.52 
г, 1.06 mmol) in toluene (10 mL) at 20 ◦C in an argon atmosphere. The 
solution was stirred for 15 h. Then the solvent was removed in vacuo. 
The solid residue was recrystallized from the n-hexane/toluene mixture. 
Compound 7 (0.37 g, 56 %) was obtained as a white powder. 

1H NMR (CDCl3), δ: 7.91 (t, J = 7.8 Hz, 1H, Ar), 7.62 (d, J = 7.8 Hz, 
2H, Ar), 7.45 (d, J = 2.3 Hz, 2H, Ar), 7.38 (d, J = 2.3 Hz, 2H, Ar), 4.74 
(m, 2Н, CH(CH3)2), 1.54 (s, 18H, C(CH3)3), 1.34 (s, 18H, C(CH3)3), 0.98 
(br. s, 12Н, CH(CH3)2). 

13C NMR (CDCl3), δ: 158.11, 156.44, 140.74, 138.89, 136.67, 
126.23, 125.25, 123.60, 122.31 (Ar), 80.07 (CH(CH3)2), 35.49 (C 
(CH3)3), 34.52(C(CH3)3), 31.80 (C(CH3)3), 30.21 (C(CH3)3), 25.40 (CH 
(CH3)2). 

Found (%): C 72.02, H 8.95, N 2.22. C39H57TiNO4. Calculated (%): C 
71.87, H 8.82, N 2.15. 

Typical Polymerization Procedure in Bulk 
All manipulations were performed under inert atmosphere. To the 

initiator 6 (0.0518 g, 0.098 mmol) ε-caprolactone (3.3557 g, 29.40 
mmol) was added. Then BnOH (10.0 μl, 0.48 mmol) was added with 
stirring and the reaction mixture was heated at 100 ◦C for 2 h. The re-
action was terminated by the addition of MeOH (1.0 mL), evaporated, 
and purified by reprecipitation using CH2Cl2 as a solvent and methanol 
as a non-solvent. The polymer obtained was dried in vacuum. 

Typical Polymerization Procedure in Solution 
All manipulations were performed under an inert atmosphere. To the 

solution of initiator 7 (0.0236 g, 0.036 mmol) in toluene (10 ml) L-lac-
tide (1.5624 g, 10.84 mmol) was added. The reaction mixture was 
heated at 100 ◦C for 6 h. The reaction was terminated by the addition of 
MeOH (1.0 ml), evaporated and purified by reprecipitation using CH2Cl2 
as a solvent and methanol as a non-solvent. The polymer obtained was 
dried in a vacuum. 

4. Conclusions 

During this work two prospective Al- an Ti-contained initiators of the 
ROP of L-lactide and ε-caprolactone, based on 2,6-bis(2‑hydroxy-3,5-di 
(tert‑butyl)phenyl)pyridine, have been prepared and fully characterized. 
We have demonstrated that these complexes can be effective initiators 
for the production of PCL and PLA with relatively narrow dispersities 
and controllable molecular weights as homopolymers, as well as can 
produce a statistical copolymer poly(LA-stat-CL) in bulk at 150 ◦С with 
high molecular mass and low dispersity. 
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