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By systems of evolutionary di↵erential equations we mean systems of
the form
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Here x = (x1, . . . , xn

) is a vector of independent spatial variables, t is time,
u = (u1

, . . . , u

m) and f = (f1
, . . . , f

m) are vector functions. We suppose
that the functions f1, . . . , fm belongs to the class C

1 within its domain.
The symbol @i

u/@x

i (i = 1, . . . , k) means the set of all partial derivatives
of order i by x.

The main idea is as follows.
This system generates a flow on maximal integral manifolds of some

completely integrable distributions P [1,2], i.e. its right parts defines Lie
algebra of symmetries of P . Consider the case when the distribution is
generated by some overdetermined system of partial di↵erential equations
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) v is a vector-valued function of
x = (x1, . . . , xn

).
Let S be a shu✏ing symmetry of the distribution P [3]. There are a

unique set of functions '1
, . . . ,'

m on J
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Here o = (0, . . . , 0) is zero multi-index, D� = D�1
1 � · · · �D�n

n

, and Ds

i

is the
s-th degree of the operator
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Note that the distribution P is generated by the vector fields D1, . . . ,Dn

.
The functions '1

, . . . ,'

m satisfy the following system:

D�+1i('j)�
nX

s=1

qX

|µ|=0

Dµ('s)
@V

j

�+1i

@v

s

µ

= 0, i = 1, . . . , n; j = 1, . . . ,m.

Solving this system we can find the vector field S. Shifts along this
vector field of solutions of the overdetermined system, we obtain a solution
to the evolutionary system.

This method will be illustrated using the examples of the Boussinesq
equation [4] (
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It made it possible to construct a family of exact solutions of the Boussi-
nesq equation which depends on six arbitrary parameters and one arbitrary
function.
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