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Abstract—In this review, the seesaw mechanism for generating the mass of active light neutrinos (both Majo-
rana and Dirac) is considered on the basis of effective field theory. In particular, we review certain models
that extend the Standard Model by introducing heavy sterile neutrinos and discuss the corresponding mech-
anisms for generating small masses of active neutrinos. Two appendices briefly describe the properties of
Weyl, Dirac, and Majorana spinors in four dimensions and interrelations between such spinors. The third
Appendix provides a simple proof of the theorem on Takagi diagonalization of the mass matrix for Majorana
fermions.
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INTRODUCTION
In the minimal Standard Model (SM), neutrinos

are massless left-chiral (left-handed) fermions [1]
forming, together with the left-handed components of
charged leptons, three doublets that are transformed
according to the fundamental representation of the
gauge group . However, the discovery of neu-
trino oscillations showed that neutrino masses are
non-zero, but for the three active neutrinos they are
very small (see review [2]). From the data of oscilla-
tions, only two differences of squared neutrino masses
(in the 3-neutrino mixing scheme) [2] are determined
but not their absolute values, which allows us to obtain
a lower limit on the largest of the three masses:

(1)
The most stringent upper limit on the sum of light

neutrino masses from modern cosmological data is [3]:

(2)

In the minimal SM, the masses of fermions
(charged leptons and quarks) are generated due to the
Yukawa interaction of the Higgs scalar doublet  with
doublets of left-handed fermion components and
right-handed fermion singlets, but neutrinos, being
only left-handed, remain massless. For the generation
of Dirac neutrino masses, which already makes it pos-
sible to describe neutrino oscillations, it is sufficient to
introduce right-handed components of neutrino fields

 ( ) and use the same Brout–Engler–
Higgs mechanism as for charged fermions. However, it

should be emphasized that right-handed neutrinos are
fundamentally different from left-handed neutrinos
and right-handed charged fermions. Namely,  are
sterile (unlike active ), i.e. they do not participate
in electroweak (and, of course, strong) interactions,
since their weak isospin and hypercharge are zero
(fields  are singlets of the gauge group

).

The Lagrangian of the interaction generating Dirac
neutrino masses has the form (we follow [4])

(3)

Here  are complex Yukawa coupling constants,
indices  enumerate lepton generations,
and  (where  is the Pauli matrix,
see (A.4)) is the doublet charge conjugated to the
Higgs doublet

(4)

with primes indicating fields with indefinite masses.

After spontaneous breaking of the gauge symmetry,
a nonzero vacuum expectation value of the Higgs field
arises, so that in the unitary gauge we have

(5)
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and Lagrangian (3) takes the form (in matrix notation):

(6)

where  is the scalar Higgs field,  denotes
the matrix of the Yukawa couplings,

,  (see Eq. (A.9) in
Appendix A).

After the bi-unitary diagonalization of the matrix ,

(7)

we obtain the Lagrangian

(8)

in terms of physical fields (with definite masses)

(9)

The Lagrangian (8) includes the mass terms (here
 are the four-component Dirac fields)

and the term of the interaction of massive neutrinos
with the Higgs boson, and what is more, the neutrino
masses expressed through the Yukawa couplings 
and the vacuum condensate  (see (7)):

(10)

The lepton weak charged current, which describes
the interaction with bosons, includes fields of the
left-handed neutrinos with definite f lavors

 which are superpositions of the
left-handed neutrino fields with definite masses
(see (9)):

(11)
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mixing, for which, in the case of Dirac neutrinos, the
standard parametrization1 is

(13)

where we use the concise notation:  and
.

We emphasize that the Standard Model determines
only the general structure of the matrix (13) but does
not predict the numerical values of its parameters,
which are determined from experimental data on neu-
trino oscillations (see [2, 5–7]). For definiteness, we
present data from [7], corresponding to the best fit and
two options of the hierarchy of the neutrino mass
spectrum (see [2, 4]), normal and inverted (indicated
in parentheses):

As it can be seen, a reliable value of the -violat-
ing phase δ cannot yet be extracted from modern
experimental data.

Equation (10) is applicable for any Dirac fermions.
From this it follows that the Yukawa coupling con-
stant  of the fermion with the Higgs boson increases
with increasing mass of the fermion, and experimen-
tal data [2] demonstrate a huge hierarchy of the mass
spectrum of fundamental fermions and corresponding

. So taking into account (5), for the neutrino (we
choose its mass , see (1)), electron and
t-quark we obtain:

(14)

This hierarchy is one of the fundamental problems
of the elementary particle physics, which cannot be
solved within the framework of the Standard Model
and requires its extension [8–11]. To study the effects
of new physics not described by the Standard Model,
the concept of effective field theory (EFT) [14–17]
developed by S. Weinberg [12, 13] is used.

Under the assumption that the energy scale  of
new physics is significantly larger than the character-

1 In the case of the Majorana neutrinos, the PMNS-matrix (13) is
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istic SM scale  (see (5)), the EFT Lagrangian is rep-
resented as

(15)

Here  is the SM Lagrangian, and the remain-
ing terms describe the effects of new physics and
include composite operators  with mass dimension

;  are the numerical dimensionless
parameters. The operators  are invariant under the
SM gauge group  and are
composed only of the SM fields. The coeffcients 
are determined from experimental data or, if the
Lagrangian of a particular theory extending the SM is
known, are expressed in terms of coupling con-
stants and masses of new (heavy) particles by matching
the amplitudes of physical processes obtained on the
basis of the two specified Lagrangians (in the region of
relatively low energies , where the effective
Lagrangian (15) is applicable). The Lagrangian (15)
can also be defined as the Lagrangian for the effective
action obtained from the generating functional of the
extended theory by integration over “heavy” fields
[14–17].

There is a unique set of operators  of dimension 5,
composed of the SM fields and possessing gauge sym-
metry [18]:

(16)

Here  is a set of (complex) dimensionless

constants,  is the charge conjugated dou-
blet and  is the charge conjugation operator (see
Eq. (A.14) in Appendix A). We stress that the operator

, which is absent in the SM Lagrangian, does not
preserve the total lepton number, changing it by two
units. After spontaneous symmetry breaking, this
operator generates a mass term for neutrinos

(17)

The symmetric (complex) mass matrix  is trans-
formed to the diagonal form by using the unitary
matrix  (see [4], as well as the comment on Eq. (46)
below):

(18)

where  are positive numbers, and the initial left-
handed flavor fields are represented in the form of left-
handed field components with definite masses:
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Making use of Eqs. (18) and (19), we reduce the
mass term (17) to the diagonal form

(20)

where

(21)
Thus, massive neutrinos turn out to be Majorana

particles (see Appendix A) coinciding with their anti-
particles. As it follows from (17) and (18), their masses

(22)

are significantly less than the masses of charged lep-
tons (see (10)) due to the presence of the suppressing
factor , caused by the effects of new physics. The
typical neutrino mass scale can be represented as

(23)

where 1015 GeV is the typical energy scale for the grand
unified models.

In this paper, we review a number of models that
extend the SM by introducing heavy sterile neutrinos
and discuss the corresponding mechanisms for the
generation of small masses of active neutrinos.

1. SEESAW MECHANISM FOR GENERATING 
NEUTRINO MASSES

To explain the small masses of active neutrinos, a
seesaw mechanism (SSM) of their generation was pro-
posed, which is caused by the interaction of flavor
neutrinos with heavy right-handed Majorana neutri-
nos [19–23]. There are three types of SSM which are
classified in [24] (see also [25]).

In this paper, we will limit ourselves to considering
SSM of type I, which is based on expanding the SM by
adding three heavy right-handed neutrinos (singlets of
the gauge group ) while preserving the stan-
dard Higgs doublet. For the SSM of type II, a heavy
Higgs triplet is added; for type III, a triplet of heavy
left-handed fermions is added (various modifications
and combinations of all these 3 mechanisms are also
possible [25]).

All these mechanisms lead to non-conservation of
the lepton number. We also note that the detailed
experimental studies of Higgs boson properties, car-
ried out after its discovery in 2012, are in good agree-
ment with the predictions of the Standard Model: so
far no signals of new physics have been detected in the
Higgs sector [2].

We first consider the SSM of type I for a simple
model of one lepton doublet , interact-
ing with a heavy right-handed neutrino (singlet) .
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The corresponding part of the full Lagrangian has
the form

(24)

where the mass is  (it is assumed that it is gen-
erated by new physics not described by the SM). After
spontaneous symmetry breaking on the  scale, the
mass part of the Lagrangian arises, which is a superpo-
sition of the Dirac and Majorana mass terms

(25)

where we introduced the notation for the Dirac mass

(26)

and  is a Majorana neutrino field.
Next, we note that in view of 
we have
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and taking into account the relations (A.14), (A.16)
and (A.17) (see Appendix A)

we represent (25) in the matrix form through the
Majorana fields  and :
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the mass matrix (Majorana fields with definite
masses) are written as follows:

(31)

As a result, (25) takes the form of the standard
Majorana mass term (cf. (20))

(32)

The initial f lavor fields (included in the Lagrang-
ian (24) and mass term (25)) turn out to be superposi-
tions of Majorana fields with certain masses:

(33)

In the case of the heavy right-handed neutrino 
we have , and from (30) and (31) we obtain
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Therefore, if  is of the order of the mass of a
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example, for  ad 

we find  (see (14) and
(23)), which is a typical grand unified scale [8–10].

In Appendix B, we consider a generalization of
SSM corresponding to the modification of the mass
matrix in (28):
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. It is determined by functional integration
over heavy Majorana fields:

(35)

where the Lagrangian (24) is conveniently represented
in the form

(36)

For deriving (36) we use the relations
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Indeed, taking into account  relations (see
Eq. (A.16) in Appendix A)

(43)

we obtain

(44)

Formulas (41) and (44) agree with (31)–(34) in the
leading order of the expansion of (39) over  as it
should be.
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sponding interaction Lagrangian which generalizes (24),
has the form [25, 27] (we use here and below the con-
cise matrix notation):
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Using obvious generalizations of the relations (37),
we represent (47) in a form analogous to (36):

(49)

Now we substitute (49) into (35) and use (38) and
(39) to obtain an effective Lagrangian which general-
izes (40):

(50)

Then, applying relations (46) and (48), we trans-
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for Dirac neutrinos (see [29] and the literature cited
there).

For a simple model with one lepton generation, the
corresponding Yukawa part of the full Lagrangian has
the form (cf. (24)):

(54)

where the Dirac bispinor  is a singlet
with respect to the SM gauge group and describes
“heavy” degrees of freedom under the assumption that
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the mass mN is significantly larger than mR and the typ-
ical electroweak scale  (see (5)).

The effective Lagrangian is obtained by substitut-
ing into (54) expressions for “heavy” fields via “light”
fields (that is equivalent, in the accepted leading order
of expansion over , to the integration over heavy
fermion fields in the generating functional, see
[27, 30]):

These expressions follow from the equations of
motion in the static approximation (neglecting the
contribution of kinetic terms in the Lagrangian, which
is justified in the energy region ):

As a result, we obtain (cf. (40))

(55)

After spontaneous symmetry breaking (see (5)),
from (55) the Dirac mass term follows (cf. (41)–(44))

(56)

Here the correct sign of the mass is provided by
making use of the -transformation of the Dirac
bispinor [31]:

There are three possible relationships for the mass
parameters:

As it was shown in [29], the case 3), called the
undemocratic Dirac seesaw mechanism (with an
appropriate generalization to several lepton genera-
tions), can be used to describe baryon asymmetry of
the Universe, as well as the stability of the dark matter.

2.4. Following the work [32], we consider a gener-
alization of the model (54) to three lepton generations
(for another generalization, see [29]). This generaliza-
tion is based on the extended symmetry group

. The group 
(which describes a discrete analogue of the lepton
number) prohibits the Majorana terms in the
Lagrangian and provides the stability of candidates for
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dark matter particles, while the group Z2 provides a
seesaw mechanism for the generation of Dirac neu-
trino mass, prohibiting tree amplitudes that connect
left-handed and right-handed neutrinos (for discrete
groups  see [33]). In addition to standard fermions,
the model includes three heavy Dirac fermions  and
three scalars (in addition to the Higgs doublet) ,
which are gauge singlets. The scalar  is uncharged
with respect to the group  but is odd with respect to

, the other two scalars are uncharged in .
The part of the Lagrangian of the model responsi-

ble for the generation of the mass of light (active) neu-
trinos has the form

(57)

where  and . The corresponding
effective Lagrangian is obtained by means of obvious
generalization of the method outlined in Section 2.3
(we use the index free matrix notation):

(58)
After spontaneous symmetry breaking, the scalars

 and  obtain vacuum expectation values (see (5)):

(59)
and as a result, the Dirac mass term is generated

where the mass matrix is (cf. (56))

(60)

Note that the -charged scalars  and  (in con-
trast to the neutral  and ) have zero vacuum expec-
tation values, so that the group  remains unbroken
after spontaneous breaking of electroweak symmetry,
while the vacuum expectation value of the scalar  (see
(59)), which is odd with respect to , breaks -sym-
metry spontaneously, which generates small Dirac
masses (see (60) for ).

Besides, the analysis shows [32] that particles 
turn out to be stable, and therefore can be considered
as candidates for the dark matter particles, while 
particles are unstable.

3. CONCLUSIONS
We have considered the Majorana and Dirac ver-

sions of the seesaw mechanism (of type I) for generat-
ing the mass of active light neutrinos, which is based
on the extension of the SM by adding heavy neutrinos
that have a Yukawa interaction with standard f lavor
neutrinos. By integrating over the “heavy” fields in the
generating functional of the theory, the corresponding
low-energy effective Lagrangians were obtained,
which, after spontaneous breaking of electroweak
symmetry, lead to the mass terms of light neutrinos.
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We stress the fundamental difference between the
mechanisms of mass generation of charged leptons
(and quarks) and light neutrinos: the masses of the
former are determined by the products of the elec-
troweak scale  and the corresponding dimensionless
Yukawa coupling constants (see (10)), while the small-
ness of the masses of the second (active neutrinos) is
ensured by the introduction of the dimensional param-
eter the large mass scale of new physics Λ, so that the
mass value is suppressed by the small ratio 
(see (23)).

In the case of the considered seesaw mechanism
(SSM), the scale  represents the scale of the masses 
of heavy neutrinos introduced during the extension of
the Standard Model. However, a natural question
arises (see, for example, [34]) about the generation of
the scale itself, which was introduced above “by
hands” (see  in (24) and  in (54)). As it can be
seen from (23), the scale of  coincides in order of
magnitude with the typical scale of Grand Unified
Theories (GUT). An example of an extension of the
SM leading to SSM is GUT, based on the gauge group
SO(10) [20]. There are many ways of spontaneous
breaking of this group up to the SM group

 with its subsequent
breaking on the scale v, besides the minimal way con-
tains two steps (see [35], where the supersymmetric
SO(10) theory is considered):

Non-supersymmetric SO(10)-GUT is considered
in [36], where, in particular, it is shown how, in the
case of spontaneous breaking of SO(10), the SSM of
type I arises for light neutrinos.

Note that left-right symmetric theories also lead to
the SSM [23, 24].

The Majorana SSM leads to non-conservation of
the lepton number L, changing it by two units (see (50)
and (53)). This opens up the possibility of observing
numerous physical processes with  induced by
Majorana neutrinos: neutrinoless double beta decay
of nuclei (see [37]) and its analogs—semileptonic
decays of mesons with the birth of a pair of leptons
with identical electric charges (dileptons) [38, 39],
production of dileptons in deep inelastic proton-pro-
ton and lepton-proton collisions at high-energy col-
liders (see, for example, [38, 40]), etc. The search for
such processes is one of the important areas of
researches in particle physics [2].

Heavy Majorana neutrinos can play a significant
role in cosmology: their decays with CP violation at
the early stages of the Universe evolution lead to lep-
ton asymmetry that, due to the special non-perturba-
tive electroweak interaction of leptons and quarks with
non-conservation of lepton and baryon numbers, is
transformed into baryon asymmetry. This mechanism
for generating baryon asymmetry in the Universe is
called the leptogenesis (see [41] and the references

v
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Λ M
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therein). An extension of the Standard Model by add-
ing three heavy right-handed neutrinos is called the
neutrino minimal Standard Mode (νMSM). Its appli-
cations in cosmology, including the problems of
baryogenesis and dark matter, are considered, for
example, in [42, 43].

In what concerns the Dirac SSM, as it was indi-
cated above, by considering the corresponding exten-
sion of the SM, new scalar singlets are introduced, and
one of these singlets can serve as a candidate for the
role of particles of the stable dark matter.

Thus, the small masses of active neutrinos serve as
a clear signal of new physics, which is not described by
the Standard Model [34].

APPENDIX A
WEYL, DIRAC AND MAJORANA SPINORS 

IN MINKOWSKI SPACE 
To describe fermion fields with spin 1/2, two-com-

ponent complex Weyl spinors are used, which are
transformed independently in the fundamental
(spinor , ) and antifundamental, or complex
conjugate to the fundamental, (spinor , )
representations of the group (here we follow
[28, 44, 45]):

(A.1)

As it is known,  is a double covering group
for the proper orthochronous Lorentz group .
The complex 2 × 2-matrix  corresponds
to a real pseudo-orthogonal 4 × 4-matrix
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where  and two sets of four
2 × 2-matrices were introduced, including Pauli
matrices  and unit matrix :
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Note that the double covering means that two ele-
ments of the group  correspond, as follows
from (A.2), to one element of the Lorentz group

: . That is why, the spinor represen-
tations of the Lorentz group are called double-valued
and the physical observables may not be the spinor fer-
mion fields themselves but their bilinear combina-
tions.
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The Dirac 4-component spinor (bispinor) ψ is
composed of two Weyl spinors (A.1):

(A.5)

which corresponds to the Weyl representation of
gamma matrices (see (A.3)):

(A.6)

The Dirac conjugated bispinor to the bispinor (A.5),
has the form2

(A.7)

(A.8)

The left-handed  and the right-handed 
bispinors, which compose the bispinor (A.5), are
expressed in terms of Weyl spinors as follows:

(A.9)

where the matrix  is defined in (A.6).
The covering group  of the Lorentz group

 acts on the bispinor (A.5) according to (A.1):

(A.10)

2 The Dirac conjugated bispinor  is constructed in a such way
that it can be covariantly contracted with the spinor . In the

definition of , the matrix  only formally coincides with the

Dirac matrix , as it can be seen from the arrangement of its
dotted and undotted spinor indices; see (A.3).
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where the matrix  is composed of 6 real
parameters of the Lorentz group. This follows from
the fact that any complex 2 × 2-matrix  is
represented as a product of Hermitian and unitary
matrices which respectively correspond to a real
pseudo-orthogonal 4 × 4 boost matrix 
and a pure three-dimensional rotation matrix in .
Taking into account the Lorentz transformation for
the coordinates , the transformation (A.10)
can be represented as

(A.11)

where  are complete generators of the Lorentz
group, including generators  in the spinor repre-
sentation.

Using the complex conjugation (A.8) one can con-
struct for the bispinor (A.5) another conjugated
bispinor

(A.12)

which is transformed according to the same law (A.10)
as the initial bispinor ψ given in (A.5). Here we intro-
duce matrices
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that lower  and raise  indices of
the components of Weyl spinors. The bispinor ,
defined in (A.12), is called the charge conjugated to the
bispinor  (65). The definition of charge conjugation
(A.5) is written in matrix form as follows
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and the charge conjugation is an involutive operation
. The charge conjugation matrix  satisfies

the relations

(A.15)

The last two relations in (A.15) are valid only in
specific representations of the Dirac matrices, for
example, in the Weyl representation used. From (A.14)
and (A.15) we find the Dirac conjugated bispinor to 

(A.16)

μν νμω = −ω

∈ SL(2, )A C

↑Λ ∈ SO (1,3)
1,3

R

μ μ ν
ν= Λ'x x

( )μν
μν

μν μ ν ν μ μν

ψ = ω ψ

= ∂ − ∂ + Σ

'( ) exp ( ),
2

1( ) ,
2

ix J x

J i x x

μνJ
μνΣ

η ε ε η   ψ = ψ = =      ε ξε ξ    
�

� �

�

�

0
* ,

0

b
aabc
aac

c

− ε = ε ε = ε ε = −ε = − σ =  
 

� �

� � 2
0 1

, , ,
1 0

ac
ab i

η = ε ηb
a ab ξ = ε ξ�� �

�

a ab
b

ψc

ψ

ε ψ = ψ = γ ψ = = γ γ ε �
0 2 00

( ) *, ,
0

c T TC C C i

ψ = ψ( )c c C

μ − μ

+ − −

γ = − γ = −
= = −

1

1 1

( ) , ,

, .

T TC C C C

C C C C

ψc

−ψ ≡ ψ = ψ = −ψ 1.c c T TC C
PHYSICS O
Note that  first relation in (A.15) is actually the
definition of the matrix , since it precisely guarantees
that if the bispinor  describes a particle with charge
e, then the bispinor  describes a particle with charge

, i.e. an antiparticle (see, for example, [46]). From
this relation it also follows that

(A.17)

Taking into account (A.17) and , we
obtain

whence for the left-handed and right-handed compo-
nents of the bispinor  we have:

(A.18)

Since the bispinors  and , as it follows from the
comparison of (A.5) and (A.12), are equally trans-
formed with respect to , they can be equated:

(A.19)
A bispinor  equal to its charge-conjugated

bispinor  is called a Majorana bispinor. Note that the
definition (A.19) can be generalized by including an
arbitrary phase factor [45, 47]: , which is
sometimes convenient (see, for example, (31)), but
one can always choose  by accordingly redefin-
ing the fermion field .

The condition (A.19) is not invariant under
-transformations , and this means that

Majorana fermions are truly neutral particles that are
identical to their antiparticles, i.e. cannot have con-
served additive quantum numbers associated with

-symmetries: electric charge and any fermion
numbers (lepton, baryon, etc.).

The condition (A.19) is equivalent (see (A.5) and
(A.12)) to the equality of the Weyl spinors, that make
up the Dirac bispinor: , and the Majorana
bispinor is represented in the form

(A.20)

i.e., it is determined by only one left-handed , or
right-handed , Weyl spinor.
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(A.21)

the
C

ψ
ψc

−e

−γ = γ5 1 5( ) .T C C
μ + μγ = γ γ γ0 0( )

−γ = − γ γ γ5 1 0 5 0( )* ,C C

ψc

( ) ( ) ( )

( ) ( ) ( )

ψ ≡ ψ = + γ ψ = ψ

ψ ≡ ψ = − γ ψ = ψ

5
L L R

5
R R L

1 1 ,
2
1 1 .
2

cc c c

cc c c

ψ ψc

SL(2, )C

ψ = ψ .c

ψ
ψc

θψ = ψc ie

θ = 0
ψ

(1)U αψ → ψie

(1)U

ξ = ηa a

( )

( )

ξ η   
ψ = ≡ ξ = ε ξ   ξ η   

η = ε η

�

� �

� �

�

M , *,

*,

a a a ab
ba a

b
a ab

ξa

η �a

( )−ψ = −ψ = ψ = ξ ξ
�

1
M M M , ,T T a

aC C
F PARTICLES AND NUCLEI  Vol. 55  No. 3  2024



NEUTRINO MASS IN EFFECTIVE FIELD THEORY 643
which allows us to write the Majorana mass term in the
Lagrangian as

(A.22)

where the factor 1/2 is introduced so that the coeffi-
cient 2 does not appear for mass  in the Dirac equa-
tion obtained by varying in  and . Using (A.20),
Eq. (A.22) can be rewritten in the equivalent form by
making the substitutions  and . We
emphasize that the convolutions of the quadratic com-
binations of the components  and  with antisym-
metric -symbols in (A.22) are nonzero due to the
anticommutativity of the components of the fermionic
fields  and . This anticommutativity also ensures
that the electromagnetic current for Majorana fermi-
ons is equal to zero:

where relations (A.19), (A.16) and (A.15) are taken
into account.

Note that the kinetic term for the Majorana field is
written in the form
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According to (A.22) and (A.23), the free Majorana
field Lagrangian has the form
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where the compact matrix notation is used (see (A.6),
(A.20) and (A.21):
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spinors
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and the second equation is obtained by complex con-
jugation from the first one. For a massless fermion
with a given 4-momentum  the bispinor

 and, as follows from (A.26) in
view of (A.3), the spinors  and  obey inde-
pendent equations

that is, these spinors are indeed left-handed and right-
handed, respectively (see (A.18)).

Now we compare the Majorana mass term (82)
with the Dirac one:

(A.27)

where we make use of the notation (see (A.5) and
(A.7))

(A.28)

Thus, the Dirac mass term arises only in the pres-
ence of both left-handed  and right-handed  Weyl
spinors, which are independent components of the
Dirac bispinor (in contrast to the Majorana bispinor,
for which the mass term is determined either by only
left-handed , or by only right-handed , Weyl
components).

APPENDIX B

MASS TERM OF GENERAL FORM

Now we consider the general mass term including
the Majorana terms of types L and R and the Dirac
term:

(B.1)

Let us introduce, following [31], Majorana bispinors

(B.2)

and, taking into account (A.18), we express in their
terms the bispinors included in (B.1):

(B.3)
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Substituting (B.3) into (B.1), we obtain a more
convenient representation of the total mass term:

(B.4)

Diagonalizing the symmetric mass matrix in (B.4)
by using the unitary matrix (see Eq. (29) above in the
main text), we deduce

(B.5)

where

(B.6)

As a result, (B.4) takes the form of a mass term for
two Majorana fermions

(B.7)

where the Majorana bispinors λ and ρ were defined
in (B.2).

Thus, the general mass term (B.1) for the bispinor
(A.28) composed of two independent Weyl spinors is in
fact a mass term for two Majorana fermions with dif-
ferent masses.

Let there be the following hierarchy of mass
parameters in (B.1):

(B.8)

Then from (B.6) and (B.7) we find

(B.9)

It follows that under the conditions (B.8), the fer-
mion  turns out to be heavy ( ), while the fer-
mion  is light. In the case of , we arrive at the
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PHYSICS O
seesaw mechanism (SSM) of the generation of a small
mass due to a large mass,

This mechanism was discussed in the main text
(see Section 1) with relation to neutrino physics.

Note also that in the standard SSM the choice of
 is made due to the fact that for the generation

of  it is required to introduce the Higgs triplet
into the theory: the L-type Majorana mass term
in (B.1) for neutrinos carries weak isospin 1.

When fixing conditions

(B.10)
we obtain the usual Dirac fermion, which corre-
sponds, as follows from (B.6) and (B.7), to the degen-
erate case of two Majorana fermions [31]:

(B.11)

Taking into account (B.3), from (B.2) we find a
representation of the Dirac field in the form of a super-
position of two Majorana fields with the same mass
(see also [31, 48])

A small deviation from the case of Dirac fermions
leads to quasi-Dirac fermions (quasi-Dirac, or pseudo-
Dirac, neutrinos in neutrino physics, see [49]). Having
determined two small parameters

and taking into account (B.6) and (B.7), we obtain
(cf. (B.11)))

APPENDIX C
DIAGONALIZATION OF THE MASS MATRIX 

FOR MAJORANA FERMIONS
In the Lagrangians describing the seesaw mecha-

nism (for the case of several generations of neutrinos),
the Majorana mass terms are written (after sponta-
neous symmetry breaking) with the help of the com-
plex symmetric mass matrix  (see (45)). Let the
number of the generations of neutrinos be equal to .
To pass to the neutrino states with definite masses, the
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symmetric complex -matrix  has to be diago-
nalized by using the unitary transformation of right-
handed Majorana neutrinos , where

. This leads to the transformation of the mass
matrix . The following statement
known in the literature as Takagi’s diagonalization the-
orem holds (see Appendix D in [28] as well as the ref-
erences therein).

Theorem. For any complex symmetric -matrix
 there exists a unitary matrix  such that

(C.1)

where all parameters  are real and non-negative.
Proof. The proof is based on the explicit construc-

tion of the unitary matrix , which diagonalizes 
according to (C.1). The complex symmetric

-matrix  is representable in the form
, where  are real symmetric 

matrices. Introduce a symmetric real -matrix
that is the 2 × 2-block matrix with -blocks :

(C.2)

where  are the Pauli matrices (A.4). It is known
that any symmetric real matrix is diagonalized by
using a real orthogonal matrix :

(C.3)

where  denotes the -dimensional unit matrix.
Obviously, all diagonal elements  are real numbers.
Taking into account , relations (C.3) are
written in the components as

(C.4)

Now we introduce the set of real -dimensional
vectors  with the coordinates  (i.e., the
vectors  are the columns of the matrix ). From the
relations (C.4) it becomes clear that  are eigenvec-
tors of the matrix  with eigenvalues :

(C.5)

where the set of  vectors  forms an orthonormal sys-
tem: , and therefore defines a basis in .

Now we note that if  is an eigenvalue of , then
 is also an eigenvalue of . Indeed, let us multiply

both sides of relation (C.5) from the left by the non-
singular matrix
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and use the obvious relation . As a result

we obtain , i.e.  is an
eigenvector of the matrix  with an eigenvalue .
Thus, all  eigenvalues of the matrix  are divided
into pairs , and each pair has one obviously
non-negative eigenvalue. We choose all such non-
negative eigenvalues3, of which there are , and denote
these eigenvalues as , while the corre-
sponding -dimensional real eigenvectors are
denoted as :

(C.6)

where , and we composed -dimensional
vectors  of two ndimensional vectors  and .
Note that the orthonormality property for any selec-
tion of vectors  is preserved, and we have

(C.7)
Let us introduce -dimensional complex vectors

 . Then the second equal-
ity in (C.6) and the orthonormality condition (C.7) can
be written as

(C.8)

where  and . Now we
define the complex -matrix , the columns of
which are the vectors , i.e. . Then the rela-
tions (C.8) are presented in the form

Thus, we have constructed a unitary matrix
, which diagonizes, according to (C.1), the

complex symmetric -matrix , and, in addi-
tion, the diagonal elements  are non-negative real
numbers, as required.
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646 BORISOV, ISAEV
dimensional space with n additional spatial dimensions
compactified on the length scale L, which corresponds to
the energy scale ΛL = 1/L. Integration over additional
dimensions leads to the Lagrangian of the low-energy effec-
tive field theory, which after spontaneous symmetry break-
ing gives the Majorana mass term for active neutrinos with

small masses of the order mν ~ /ΛL ~ 10–3 eV, where the
scale is taken to be ΛL ~ 100 TeV.
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