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According to the Rayleigh criterion, it is impossible to resolve two independent point sources separated
by a distance below the width of the point spread function (PSF). Almost twenty years ago it was shown
that the distance between two point sources can be statistically estimated with an accuracy better than the
PSF width. However, the estimation error increases with decreasing distance. This effect was informally
named Rayleigh’s curse. Next, it was demonstrated that PSF shaping allows breaking the curse provided
that all other source parameters except for the distance are known a priori. In this work, we propose a
novel imaging technique based on the target Beam moduLation and the Examination of Shot Statistics
(BLESS). We show that it is capable of breaking Rayleigh’s curse even for unbalanced point sources with
unknown centroid and brightness ratio. Moreover, we show that the estimation precision is close to the
fundamental limit provided by the quantum Cramér–Rao bound.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION1

The standard diffraction theory claims that the far-field linear2

optical imaging resolution is restricted by the Rayleigh limit: two3

point sources cannot be resolved if the distance between them4

is smaller than the point spread function (PSF) width, which is5

proportional to the radiation wavelength [1]. There are many6

techniques allowing to overcome the Rayleigh limit [2]. Some of7

them are based on nonlinear light-matter interaction [3], complex8

systems of excitation and suppression of luminescence [4], and9

consequently have a very limited field of application.10

A different strategy allowing super-resolved imaging is based11

on the usage of a prior information about the object. Describing12

the whole object with a few parameters reduces the imaging13

problem to the problem of statistical estimation. In particular,14

van den Bos group considered the problem of two point sources15

localization [5, 6]. Using the model of Gaussian PSF, they con-16

cluded that if the distance d between sources is larger than PSF17

width σ, its estimation error ∆d is proportional to σ√
K

, where K18

is the number of registered events. If d < σ then ∆d ∝ σ√
Kd/σ

.19

Hence, the distance between two close point sources cannot20

be accurately estimated with a limited amount of data. This21

problem was named Rayleigh’s curse [7].22

Later Tsang et al showed the possibility to overcome23

Rayleigh’s curse [7–9]. They considered the problem of resolving24

two equal point sources in terms of quantum Fisher information25

(QFI). They proved that QFI was independent of the distance26

d value, which means that the parameter can be precisely esti-27

mated beyond the Rayleigh limit. Moreover, the QFI limit can28

almost be saturated by practical measurement protocols: SPAtial-29

Mode DEmultiplexing (SPADE) [7] and SuperLocalization by30

Image inVERsion interferometry (SLIVER) [8]. Both protocols31

make use of the PSF (or detection/target mode) shaping. In32

particular, the use of odd PSF instead of even Gaussian PSF33

breaks Rayleigh’s curse. This has been demonstrated in the set34

of proof-of-principle experiments [10–13].35

But it was later shown that the Rayleigh’s curse can be over-36

come for the two-parameter object model only [14–20]. Two un-37

balanced point sources with unknown brightness ratio [15, 17]38

or more than two equal sources [14] cannot be precisely local-39

ized beyond the Rayleigh limit: the position estimation error in-40

creases polynomially with decreasing distance between sources.41

In general, any object can be parameterized by its intensity42

moments. It was shown that the estimation errors of the first and43

the second intensity moments are independent of the object size,44

but the Rayleigh’s curse still holds for higher k-order moments45

Mk, resulting in ∆Mk ∝ d1−k/2, so they cannot be well estimated46

beyond the Rayleigh limit [18–20].47

To perform precise imaging of complex objects one needs48

to extract additional information from measurements. Previ-49
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Fig. 1. The principal imaging scheme. SLM – spatial light mod-
ulator, SMF – single-mode fiber, PNRD – photon number re-
solving detector.

ously, most of the imaging statistical estimation problems were50

considered in the weak source approximation, where the num-51

ber of detected photons was not greater than 1, and the spatial52

distribution of mean photon number was measured [7–20].53

However, higher order intensity (or photon number) mo-54

ments give benefits for solving imaging problems. One of the55

first demonstrations of this was done by Brown and Twiss in56

their stellar interferometer experiment [21]. It was later shown57

that PSF for N-order intensity moment measurement was
√

N58

times narrower than the first-order one [22]. This was experi-59

mentally applied to the single-photon emitters imaging [23–27].60

Also, intensity fluctuation analysis was used for single molecule61

localisation (SML) techniques like STochastic Optical Reconstruc-62

tion Microscopy (STORM) [28] and PhotoActivated Localization63

Microscopy (PALM) [29] techniques, where the positions of in-64

dependently blinking point sources were estimated from a set65

of frames obtained at different times. Initially, these techniques66

required that only one molecule emitted within a PSF area at any67

given time. However, advanced methods [22, 30, 31] employ68

intensity correlation analysis to relax this stringent requirement.69

Traditional SML techniques [22, 28–31] rely on long-term (> µs)70

intensity fluctuations associated with blinking and bleaching71

phenomena. Short-term photon correlations (< µs), on the other72

hand, have primarily been utilized for efficient PSF narrowing73

purposes [23–27]. Recently, there has been a shift towards apply-74

ing photon statistics analysis to address the localization problem75

in point sources with varying photon statistics [32–34]. How-76

ever, breaking Rayleigh’s curse through this approach has not77

yet been reported.78

Below in Section 2 we propose an approach that combines79

the statistical estimation of image parameters, PSF shaping and80

the examination of photon statistics distribution. We consider81

the localization of single-photon sources as an example, partic-82

ularly prevalent in fluorescence microscopy, where one need83

to resolve individual molecules of fluorophores employed in84

staining biological tissues [35]. In Section 3 we describe the85

motivation behind using this approach. Using the classical and86

quantum Cramér–Rao bound (Section 4) we show that this87

technique allows breaking Rayleigh’s curse for two unbalanced88

single-photon emitters (Section 5).89

2. BLESS TECHNIQUE90

Consider a 1D imaging problem for two uncorrelated single-91

photon point sources Sa and Sb located at xa and xb respectively92

(Fig. 1). The sources have the following photon number distri-93

butions:94

Pa,b(n) = δ0n(1 − µa,b) + δ1nµa,b, (1)

where δij is the Kronecker delta, µa and µb are mean photon95

numbers. One can describe this object using the following set of96

4 parameters:97

• distance d = xa − xb,98

• total mean photon number µ = µa + µb,99

• centroid xc = (µaxa + µbxb) /µ,100

• relative brightness γ = (µa − µb)/µ ∈ [−1, 1].101

The light from the source is passed throw a 4 f imaging sys-102

tem with 1:1 magnification. Since the imaging lens has a limited103

numerical aperture (NA), the light from the source s, located at104

xa has a Gaussian far-field electric field105

Ψ̃a(q) =
1

(πσ2)1/4 exp
[
− q2σ2

2
+ ixa

]
, (2)

which is related to the Gaussian near-field electric field106

Ψa(x) =
1

(πσ2)1/4 exp
[
− (x − xa)2

2σ2

]
, (3)

called Point Spread Function (PSF). Its width σ ∼ λ/NA. For107

the source, located at xb we have the similar equation for Ψb(x).108

In the image plane light is coupled to the single-mode fiber109

(SMF) collimator which forms a Gaussian target (detection)110

mode at position xD with waist σ0:111

Ψ0(x) =
1

(πσ2
0 )

1/4
exp

[
− (x − xD)

2

2σ2
0

]
. (4)

Here and below lower index D corresponds to the detection112

process. Scanning xD one can measure the image profile. Addi-113

tionally, one can place a Spatial Light Modulator (SLM) between114

the lenses which transforms the Gaussian HG0 Target Mode into115

the first Hermite-Gaussian mode HG1 with the field distribution116

Ψ1(x) =
√

2(x − xD)

σ0(πσ2
0 )

1/4
exp

[
− (x − xD)

2

2σ2
0

]
. (5)

Bellow we will show that this target beam modulation combined117

with a photon number distribution measurement plays a key118

role in precise emitters localization.119

In order to measure the photon number distribution, the120

SMF output is connected to a photon number resolving detector121

(PNRD). For simplicity we assume the detector quantum effi-122

ciency to be 100%. The probability of detecting a single photon123

emitted by the point source Sa is then124

T(0,1)
a =

∣∣∣∣∫ Ψ∗
0,1(x)Ψa(x)dx

∣∣∣∣2. (6)

Here and bellow we consider the case σ0 = σ which is a trade-125

off between the high resolution and high efficiency. Under this126

condition127

T(0)
a = exp

[
− (xa − xD)

2

2σ2

]
(7)
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for HG0 Target Mode and128

T(1)
a =

(xa − xD)
2

2σ2 exp
[
− (xa − xD)

2

2σ2

]
(8)

for HG1 Target Mode.129

Then the total probability of detecting k photons from the130

source Sa is131

Pa,D(k|θ, xD) =
∞

∑
n=k

(
n
k

)
Pa(n)Tk

a (1 − Ta)
n−k. (9)

The probability distribution Pb,D for the source Sb is calculated132

in the similar way.133

Since the sources are uncorrelated, the convolution of Pa,D134

and Pb,D gives the detected photon number distribution, which135

depends on the detector position xD and image parameters136

θ = {d, γ, µ, xc}:137

PD(k|θ, xD) =δ0k(1 − Ma)(1 − Mb)+

δ1k(Ma + Mb − 2Ma Mb)+

δ2k Ma Mb,

(10)

where Ma = µaTa, Mb = µbTb. The mean detected photon138

number for this distribution is139

MD(xD) = Ma + Mb, (11)

the variance is140

σ2
D(xD) = Ma(1 − Ma) + Mb(1 − Mb), (12)

and the normalized second-order correlation function is141

g(2)D (xD) =
2Ma Mb

(Ma + Mb)2 . (13)

The process of the statistical reconstruction of image param-142

eters is performed through the measurement of photocounts143

across detector positions. The acquisition time is divided into144

the intervals comparable to the emitters’ lifetimes (shots). This145

division enables to measure photocount histograms reflecting146

the detected photon number distribution. The object parameters147

are then derived by fitting function PD with parameters θ to148

histograms. This innovative approach makes use of both the149

target Beam moduLation and the Examination of Shot Statistics150

(BLESS), effectively enabling us to achieve subdiffraction emitter151

localization.152

Meanwhile, the standard approach exploits the integrated153

number of registered photons: one estimates the parameters154

from measuring Eq. (11) only.155

Experimentally, the use of integrated statistics corresponds156

to a single measurement with a long exposition time, while the157

shot statistics analysis assumes many measurements with a short158

exposition time.159

3. WHY BLESS?160

To understand how the target mode shaping and photon statis-161

tics measurements can improve the two point resolution, con-162

sider the example presented in Fig. 2. The object consists of163

two point sources Sa and Sb with coordinates xa = σ/
√

2,164

xb = −σ/
√

2 and mean emitted photon numbers µa = 0.1,165

µb = 0.2. Usual imaging scheme allows one to measure the166

mean photon number MD versus the detector position xD (we167

assume the Gaussian PSF of the detector with the width σ). This168

Fig. 2. The detected mean photon number MD (blue dashed

lines) and the second-order correlation function g(2)D (green
solid lines) vs. detector position xD in units of σ for the Gaus-
sian HG0 PSF (left) and for the Hermite-Gaussian HG1 PSF
(right). The object consists of two point sources Sa and Sb with
coordinates xa = σ/

√
2, xb = −σ/

√
2 and mean generated

photon numbers µa = 0.1, µb = 0.2.

dependence is presented by the blue dashed line on the left plot.169

This image looks like a single Gaussian function, which center is170

shifted to the left, since the left source is brighter, and it is really171

hard to resolve two sources from this picture. If one transforms172

the Target Mode to the Hermite-Gaussian mode HG1 and again173

measures the mean photon number, they obtain an image, pre-174

sented by the blue dashed line on the right plot. Here we can175

see the two peaks and a dip between them. Its depth depends176

both on the distance d between two sources and on their relative177

brightness γ, so if one of these parameters is known a priory, it178

is easy to estimate another one from this plot, but if both param-179

eters are unknown, it is still difficult to estimate them. However,180

one can measure the photon number distribution at each po-181

sition xD and calculate the second-order correlation function182

Eq. (13) which is presented as a green solid line on both plots.183

Both g(2)D plots differ from MD plots and they can carry some184

additional information about the object parameters. For the185

HG1 Target Mode case the improvement is really huge and quite186

visible. If the detector position xD exactly equals the position187

xa, it register no light from the source Sa since HG1 function188

is asymmetrical and gives zero overlap with the Gaussian PSF189

Eq. (8). So, in this point detector register the light from the only190

one single-photon source Sb and therefore the g(2)D function ex-191

actly equals zero at this point. By the same reason g(2)D has a192

minimum at xD = xb. This means that correlation function has193

narrow dips at the positions of single-photon sources, which can194

be used for their precise localization.195

This approach can be generalized to a large number of inde-196

pendent single-photon sources N since even in this case g(N)
D197

correlation function has narrow minima at the sources locations.198

Therefore, the photon number distribution measurement (which199

contain information about all the correlation functions) com-200

bined with the asymmetric shaping of the target mode, can201

provide the subdiffraction photon source localization.202

4. LIMITS ON PARAMETERS ESTIMATION203

A. Cramér–Rao bound (CRB)204

Consider a statistically efficient unbiased estimate θ̂ of four image205

parameters. For each imaging experiment, θ̂ is a random vector206

having multivariate normal distribution f (θ̂) centered at point207

θ∗ of the true parameters values [36, 37]. According to CRB, the208
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covariance matrix Σ of f (θ̂) is the inverse of the 4 × 4 Fisher209

information matrix I with elements210

Iαβ = ∑
k

[∂αP(k)][∂βP(k)]
P(k)

∣∣∣∣
θ=θ∗

, (14)

where P is the detector photon number distribution Eq. (10),211

and ∂α is its partial derivative with respect to the parameter212

θα [36, 37]. The values ∆α =
√
[I−1]αα thus describes the sta-213

tistical limits of the parameters θα estimation error. Since the214

Fisher information is additive over independent trials, we define215

the complete information matrix as I = ∑xD
KxD IxD . Here we216

take the sum over various target beam positions xD with the217

corresponding sample size KxD and Fisher information matrix218

IxD .219

Non-efficient estimators give Σ > I−1 (Σ − I−1 is a positive-220

definite matrix). The bound Σ = I−1 is usually attainable for the221

maximum-likelihood estimator (see Supplement 1, section 1)222

but the maximization routine becomes slower with decreasing223

distance d. Moreover, we expect the computation complexity224

to increase tremendously with the increasing amount of light225

sources and consequently the number of parameters to estimate.226

In this regard, it is important to discover efficient methods for227

solving this optimization problem.228

For the integrated statistics we analyze the information car-229

ried by the mean photon number MD in each detector position230

xD. The Fisher information for estimating MD is just KxD

/
σ2

D ,231

so the information matrix for object parameters is232

IM
αβ =

KxD

σ2
D(xD)

[∂α MD(xD)][∂β MD(xD)]. (15)

As before, summing up over different xD gives the complete in-233

formation matrix. Note that considering the integrated statistics234

is similar to the widely used weak source approximation [7–20].235

Below we will demonstrate that it does not provide enough236

information in order to break Rayleigh’s curse for unbalanced237

point sources.238

B. Quantum CRB239

Fisher information matrix depends on the particular measure-240

ments. However, one might be interested in the ultimate limit241

over all possible measurements. This could be achieved by com-242

puting the quantum Fisher information matrix [7, 14, 38]:243

IQ
αβ = 2 ∑

kl,λk+λl ̸=0

⟨ψk|∂αρ|ψl⟩ ⟨ψl |∂βρ|ψk⟩
λk + λl

∣∣∣∣
θ=θ∗

. (16)

Here ρ is the image density matrix, ρ = ∑j λj

∣∣∣ψj

〉〈
ψj

∣∣∣ – its244

spectral decomposition. The quantum CRB is then the inverse245

of matrix IQ.246

Following the proposed BLESS approach one defines the247

density matrix ρ of the light in the image plane taking into248

account both photon number and spatial degrees of freedom.249

For two single-photon sources one obtains250

ρ = w0 |0⟩⟨0|+ w1a |1a⟩⟨1a|+ w1b |1b⟩⟨1b|+ w2 |2⟩⟨2| . (17)

Here w0 = Pa(0)Pb(0) is the probability of vacuum state (0 pho-251

tons), w1a = Pa(1)Pb(0) (w1b = Pa(0)Pb(1)) is the probability of252

the source A (B) to emit a single photon, w2 = Pa(1)Pb(1) is the253

probability to get 2 photons from both sources. The correspond-254

ing states are255

|1a⟩ = q†
a |0⟩ , |1b⟩ = q†

b |0⟩ ,

|2⟩ =
q†

aq†
b√

1 + V2
|0⟩ ,

(18)

where256

q†
a,b =

∫
Ψa,b(x)a†(x)dx (19)

are the creation operators for Gaussian modes, a†(x) is the cre-257

ation operator for coordinate x, Ψa(x) and Ψb(x) are Gaussian258

functions, centered at xa and xb respectively (see eq. Eq. (3)). The259

overlap integral between two modes is260

V ≡
∫

Ψa(x)Ψ∗
b (x)dx = exp

(
− d2

4σ2

)
. (20)

The computation of Eq. (16) is a bit tricky since operators q†
a261

and q†
b are not orthogonal (do not commute). We first introduce262

a set of eight non-orthogonal states that supports Eq. (17) and its263

derivatives. Then we perform its numerical orthogonalization.264

The resulting orthonormal basis is used to get the matrix repre-265

sentation of the operators in Eq. (16) and compute the quantum266

Fisher information matrix. See details in Supplement 1, sec-267

tion 2.268

5. RESULTS AND DISCUSSION269

We have analyzed lower bounds for the estimation accuracy of270

source parameters depending on the distance d between two271

unbalanced point sources and their brightness ratio γ. Fig. 3272

shows the estimation errors (standard deviations) for parameters273

d (a, c, e), γ (b, d, f), µ (g) and xc (h). Note that we multiply all ∆α274

by
√

K (K = ∑xD
KxD ) to make them sample size independent.275

The plots for ∆µ and ∆xc almost don’t depend on the value of276

γ, so we present them for γ = 0.1 only, but ∆d(d) and ∆γ(d)277

dependencies are significantly different for distinct γ. Below we278

discuss the main observations from the plots.279

A. Distance d estimation error280

The quantum CRB for the distance error ∆(Q)
d does not depend281

on d for all the gamma values, which means that the Rayleigh’s282

curse can be overcome. We have empirically found the following283

simple relation:284

∆(Q)
d =

√
2σ√

µ − µ2/2
√

1 − γ2
√

K
. (21)

This dependency on γ means that d can be estimated better285

for the sources with similar brightness than for significantly286

unbalanced sources. The dependency of µ means that for small287

mean photon number most of the shots have no photons and so288

do not carry any information about the source.289

For classical CRB the errors look different for different mea-290

surement protocols. For two equal point sources with γ = 0291

(Fig. 3a) the photon number statistics examination give no ben-292

efit: both solid lines (blue and red) and both dashed lines are293

perfectly matched. However, the target mode transformation294

significantly helps. For HG0 target mode ∆d ∝ d−1, which corre-295

sponds to the Rayleigh’s curse, presented in [5, 6]. At the same296

time, for HG1 mode Rayleigh’s curse is dispelled: ∆d saturates297

at d/σ ∼ 0.1 and then remains constant for d < 0.1σ as well as it298

was presented in [7–9].299
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Fig. 3. Normalized estimation errors of the distance between the point sources d (a, b, c), their relative brightness γ (e, f, g), total
mean photon number µ (d) and centroid xc (h) versus d. The total mean photon number µ = 0.1. The relative brightness γ = 0 (a,
e), γ = 0.001 (b, f), γ = 0.1 (c, d, g, h). Black dotted line corresponds to the quantum Cramér–Rao bound, other lines – to classical
Cramér–Rao bounds with different measurement protocols: dashed lines correspond to Gaussian PSF, solid lines – to HG1-mode
PSF, red lines correspond to the mean photon number measurements, blue lines – to the shot statistics analysis. For all the protocols
detector position xD/σ = −2,−1.9, . . . , 1.9, 2 and the centroid position xc/σ = 0.001. The proposed BLESS technique corresponds
to HG1-mode PSF and the shot statistics analysis (blue solid line). Note that the mesh xD does not contain the unknown centroid
location xc, and the error for BLESS technique starts to grow when d ≲ 2xc (gray regions on the plots).

Here and bellow, ∆d(d) remains constant while there is a node300

in the detector position mesh in between two sources positions (i.e.301

xa > xD > xb for some xD). It means that for high resolution one302

needs to decrease the scanning step or adjust the detector position303

adaptively. If this condition is not satisfied, the estimation error ∆d304

starts to grow, which we can see in Fig. 3(a–c) for the blue solid line in305

the range d/σ ≲ 2 × 10−3 = xc/σ, selected with gray.306

For unbalanced point sources with γ = 0.1 (Fig. 3c) and307

higher, the ∆d(d) dependencies are different. Measuring just a308

mean value in each image point can not give a precise estimation309

accuracy of the distance: for both HG0 and HG1 target modes310

∆d ∝ d−2, which matches the results presented in [17]. However,311

shot statistics examination allows to limit ∆d. For HG0 mode312

∆d
√

K ∼ 103 for d/σ < 10−2 and for HG1 mode ∆d
√

K ∼ 10 for313

d/σ < 10−1. So, for this case the target beam modulation can314

increase the accuracy by two orders of magnitude, but does not315

qualitatively change the ∆d(d) dependency.316

Note, that in [17] quantum CRB leads to ∆d ∝ d−1 for unbal-317

anced sources, but for our model, considering photon-number318

distribution, quantum CRB leads to ∆d = const, which means,319

that full model allows better results even from the fundamental320

point of view.321

In the intermediate case with γ = 0.001 (Fig. 3b), one can see322

that the combination of the target beam modulation and the shot323

statistics examination allows limitation of ∆d(d) dependency324

(beating the Rayleigh’s curse), while all the other measurement325

protocols demonstrate an error growth as ∆d ∝ d−1 and ∆d ∝326

d−2.327

Therefore, for all the values of γ BLESS protocol limits the328

∆d(d) dependency which is qualitatively close to quantum CRB329

∆d = const, but for d → 0 the quantum CRB value is ∼ 10330

times lower than the best considered classical CRB. It means,331

that our measurement protocol is still not optimal and can be332

improved. For example, parallel image acquisition in all the333

image pixels instead of point-by-point scanning can significantly334

boost the measurements, but it requires much more complicated335

equipment.336

B. Brightness ratio γ estimation error337

As one can see from (Fig. 3e–g), the brightness ratio estimation338

error ∆γ almost does not depend on the choice of the target339

mode (dashed and solid lines stay very close). Independently340

on the γ value integrated statistics measurement leads to ∆γ ∝341

d−3. Shot statistics examination allows better precision. For342

balanced sources with γ = 0 (Fig. 3e) it leads to ∆γ ∝ d−1 and343

for unbalanced sources with γ = 0.1 (Fig. 3g) ∆γ saturates to344

the constant level for d/σ < 0.1 for shot statistics examination.345

For the intermediate case with γ = 0.001 (Fig. 3f) the error346

dependency ∆γ(d) also saturates, but at higher level and for347

smaller values of d. For all the plots presented in Fig. 3(e–g) one348

can note that quantum CRB curve is close to the classical CRB349

for shot examination protocols, but a bit lower.350
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C. Integral parameters µ and xc estimation errors351

The integral source parameters µ and xc (Fig. 3d, h) can be well-352

estimated with all the measurement protocols. For d < 0.1σ353

all CRB for all the protocols as well as quantum CRB lead to354

∆µ(d) = const and ∆xc (d) = const. However for the centroid xc355

BLESS allow higher accuracy than other protocols.356

The increase of xc estimation error for high values of d (which357

takes place for all the CRB plots) can be explained with two358

reasons. First, for higher values of d larger part of the image is359

not covered by the mesh xD/σ = −2,−1.9, . . . , 1.9, 2. Second, it360

can be shown that for d ≫ σ the error ∆xc ∝ d. By definition361

xc ≡
µaxa + µbxb

µa + µb
. (22)

For well-separated sources all the parameters xa, xb, µa, and362

µb can be independently estimated with the corresponding er-363

rors. The error of the xc value can be calculated as an indirect364

measurement error:365

∆2
xc
=

d2(µ2
a∆2

µb
+ µ2

b∆2
µa
) + µ2(µ2

a∆2
xa
+ µ2

b∆2
xb
)

µ4 , (23)

so, indeed for large d values ∆2
xc

∝ d2.366

D. Applicability of BLESS approach367

Since our technique requires less prior information about the368

studying object (in comparison with all the previous methods369

beating the Rayleigh’s curse [7–9]), it can be used for a wider370

range of real metrological applications. This includes improving371

both lateral [10–13] and axial [39, 40] resolution in microscopy,372

as well as elevating temporal [41] and spectral [42] resolution373

capabilities.374

However, BLESS approach is limited by the localization of375

single-photon emitters, so its main application can be found376

in Single Molecule Localization (SML) field aimed to localize377

dye molecules attached to the biological samples [35]. Typical378

molecule size ∼ 10 nm is about 10 times smaller than the confo-379

cal microscope PSF width σ ∼ 200 − 300 nm. As follows from380

Eq. (21), for µ ∼ 10−2 (which fits with an order of total emitter,381

detector, and imaging system efficiency) one needs to acquire382

about K ∼ 106 shots to obtain 10 times resolution enhancement383

(∆d ∼ σ/10). According to Fig. 3e, the distance error ∆d for384

BLESS can be 10 times bigger than quantum CRB, so real num-385

ber of shots can reach K ∼ 108. However, the shot duration386

should be about a dye molecule lifetime τ ∼ ns, therefore the387

total acquisition time is less than 1 second, which is suitable for388

many imaging applications. In contrast with other SML tech-389

niques like STED [4], STORM/PALM [28, 29], BLESS technique390

does not require switchable dyes, so it can be used for a wider391

range of biological samples.392

E. Research prospects393

Our study is the first step in a comprehensive research program.394

This program includes a study of the scalability of BLESS with an395

increase in the number of emitters [14, 43] and an assessment of396

its robustness against experimental imperfections such as back-397

ground illumination, detector noise, etc [44–46]. Moreover, our398

approach can be extended to point sources with different pho-399

ton statistics, including thermal sources and partially coherent400

sources [41, 47–49]. The use of adaptive measurement strate-401

gies [50], and machine-learning approach for optimization of the402

measurement protocol[51] and fast photon statistics analysis[27]403

can also be promising.404

6. CONCLUSION405

In conclusion, we have proposed a novel imaging technique.406

This technique is based on the multi-shot photon number mea-407

surements in the modulated target beam that scans the object.408

Image parameters are then estimated by fitting the photon num-409

ber distribution model to the collected data. The approach has410

been theoretically studied on the example of two unbalanced411

single-photon sources. The Cramér–Rao bound (both classical412

and quantum) analysis has shown that even for infinitely close413

sources the estimation error of the distance between them is414

limited. Thus, we have demonstrated that the form of photon415

number distribution should be used in the statistical estimation416

of image parameters since it provides an additional information,417

and in particular allows one to break Rayleigh’s curse. The pro-418

posed method can be used for the single molecule localization419

and other microscopy applications.420
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