

Russian Quantum Center

НЕЛИНЕЙНЫЕ И КВАНТОВЫЕ ЭФФЕКТЫ В ОПТИЧЕСКИХ МИКРОРЕЗОНАТОРАХ

А.Н. Данилин^{1,2}, А.Е. Шитиков¹, Н.Ю. Дмитриев¹, Д.А. Чермошенцев¹, В.Е. Лобанов¹, Ф.Я. Халили¹, И.А. Биленко^{1,2*}

1Российский Квантовый Центр

²МГУ имени М.В. Ломоносова

Whispering gallery modes

WGM resonators are multimode ones in essence. If absorption and scattering are reduced – Q factor can be very high!

Whispering gallery modes – a retrospective

1986: *"We managed to made a microwave WGM resonators with Q>10⁸. Why non to try optics?"*

Whispering gallery modes – a retrospective Ultimate *Q* of optical microsphere resonators

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko

We demonstrate the quality factor $Q = (0.8 \pm 0.1) \times 10^{10}$ of whispering-gallery modes in fused-silica microspheres at 633 nm, close to the ultimate level determined by fundamental material attenuation as

Fig. 1. Mode energy damping curve for a WG mode in a 750- μ m sphere. Estimated damping time $\tau = 2.7 \ \mu$ s; $\lambda = 633 \ nm$.

Optics Letters 21(7), 453-455 (1996) Cited: 1409 Russian Quantum Center

Whispering gallery modes – a retrospective Ultimate *Q* of optical microsphere resonators

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko

We demonstrate the quality factor $Q = (0.8 \pm 0.1) \times 10^{10}$ of whispering-gallery modes in fused-silica microspheres at 633 nm, close to the ultimate level determined by fundamental material attenuation as

Fig. 1. Mode energy damping curve for a WG mode in a 750- μ m sphere. Estimated damping time $\tau = 2.7 \ \mu$ s; $\lambda = 633 \ \text{nm}$.

Optics Letters 21(7), 453-455 (1996) Cited: 1409

If a children's swing had a quality factor $Q \sim 10^9$, once pushed one could swing for 30 years!

Russian Quantum Center

Volumetric resonators: crystals and glasses

Made by diamond cutting and asymptotic polishing or by melting

Челябинск-2024 Биленко И.А. 23.10.2024

Integrated high-Q resonators

CC-BY Pascal Del'Haye

epi-Si

0.5 µm

Si3N4

- 30 µm

Au Si₃N₄

SiO₂

LiNbO₃

LiNbO₃

8 µm

3 µm

SiGe

Si substrate

Materials:

- 1. SiO2 (etching + reflow)
- 2. CMOS comparable:
 - a. Si (but TPA at 1.55 μ m)
 - b. Si_3N_4
 - c. AlN
 - d. SiGe
- 3. InP (no high-Q but emitter complementarity)
- 4. LiNbO3
- 5. Combinations, others.

челябинск-2024 Биленко И.А. 23.10.2024

Materials:

- 1. SiO2 (etching + reflow)
- 2. CMOS comparable:
 - a. Si (but TPA at 1.55 μ m) b. Si₃N₄-n=2, 4 - 0.4 μ m transparency, mature technology for applications and mass productions
 - a. AlN
 - b. SiGe
- 3. InP (no high-Q but emitter complementarity)
- 4. LiNbO3
- 5. Combinations, others.

Integrated high-Q resonators

Joint research of SUSTech and RQC supported by the RSF-NSFC grant for 2023-2025

Crystalline vs integrated resonators

$Q > 10^{9}$

PRO:

- Superior Q-factor
- Available from mid IR to UV wavelengths
- Tunable coupling

 $Q > 10^7$ (high confinement) $Q \sim 2x10^8$ (low confinement)

PRO:

- Mass production ready
- Reproducibility
- Single mode
- Flexible and scalable design

Laboratory of Coherent Microoptics and Radiophtonics

Russian Quantum Center

professor Michael Gorodetsky 1966 – 2019

Self-injection locking (SIL) effect

Resonant Rayleigh back scattering tunes laser exactly on the WGM resonance

Phase noise (SSB), dBc/Hz

-40

-60

-80

-100

10

100

Laser

 $Ae^{\mathrm{i}\omega\mathrm{t}}$

 $\kappa_{
m LC}$

0

Optimization of the SIL regime

Laser line can be narrowed up to 100 times better!

REVIEW: Kondratiev, N. M., Lobanov, V. E., Shitikov, A. E., Galiev, R. R., Chermoshentsev, D. A., Dmitriev, N. Y., ... & Bilenko, I. A. Recent advances in laser self-injection locking to high-Q microresonators. Frontiers of Physics, 18(2), 21305, 2023.

Russian

Quantum Center

Generation of Kerr microcombs in microresonators

P. Del'Haye et al., 2007 (MPQ)

Effect of cubic nonlinearity: a non-linear SIL

Russian Quantum Center

Resonator non-linearity drastically changes the SIL dynamic:

$$\begin{split} \frac{dN}{d\tau} &= J_N - \frac{\kappa_N}{\kappa_0} N - Ng_l |A_l|^2, \\ \frac{dA_l}{d\tau} &= \left(i\xi_0 - iv_{\xi}\tau + (1+i\alpha_g)Ng_l - \frac{\kappa_l}{\kappa_0} \right) A_l - e^{i\Omega_l t} \sum_{\mu} \tilde{\kappa}_{\text{Laser}} A_{\mu}^- e^{-i\omega_{\mu}^{(1)}(t-t_s)}, \\ \frac{dA_{\mu}^+}{d\tau} &= \left(-\frac{\kappa_{\mu}}{\kappa_0} - id_2\mu^2 \right) A_{\mu}^+ + i\beta_{\mu}A_{\mu}^- + i\tilde{g}_{\mu}S_{\mu}^+ - \tilde{\kappa}_{\text{WGR}} e^{i\omega_{\mu}^{(1)}t} \delta_{0\mu}A_l e^{-i\Omega_l(t-t_s)}, \\ \frac{dA_{\mu}^-}{d\tau} &= \left(-\frac{\kappa_{\mu}}{\kappa_0} - id_2\mu^2 \right) A_{\mu}^- + i\beta_{\mu}A_{\mu}^+ + i\tilde{g}_{\mu}S_{\mu}^-. \end{split}$$

Kondratiev, N. M., Lobanov, V. E., Lonshakov, E. A., Dmitriev, N. Y., Voloshin, A. S., & Bilenko, I. A. Numerical study of solitonic pulse generation in the self-injection locking regime at normal and anomalous group velocity dispersion. Optics Express, 28(26), 2020.

Effect of cubic nonlinearity: a non-linear SIL

Russian Quantum Center

Resonator non-linearity drastically changes the SIL dynamic:

Voloshin, A. S., Kondratiev, N. M., Lihachev, G. V., Liu, J., Lobanov, V. E., Dmitriev, N. Y., ... & Bilenko, I. A. Dynamics of soliton self-injection locking in optical microresonators. Nature communications, 12(1), 1-10, 2021.

Челябинск-2024 Биленко И.А. 23.10.2024

Raman solitons and platicons in Si₃N₄ integrated microring resonators

Raman solitons and platicons in Si₃N₄ integrated microring resonators

Raman solitons and platicons in Si_3N_4 integrated microring resonators

With Raman comb generation

Without Raman comb generation

Laser Four-Wave Mixing

Russian Quantum Center

Sokol D.M. et al,. "Four-wave mixing in a laser diode gain medium induced by the feedback from a high-Q microring resonator", Optica Open, (2024)

Laser Four-Wave Mixing

Sokol D.M. et al,. "Four-wave mixing in a laser diode gain medium induced by the feedback from a high-Q microring resonator", Optica Open, (2024)

Russian Quantum Center

Effects of cubic nonlinearity – quantum squeezing

Parametric oscillation can be used for quadrature squeezing: Weak signal - distributions still gaussian!

Effects of cubic nonlinearity – self phase modulation:

Russian Quantum Center

Possibility to obtain "true" non-classical states

SPF in $\chi^{(3)}$ media could produce a **bright** "banana" state with **non**-gaussian distributions

Lumped single mode system – Hamiltonian model

Russian Quantum Center

$$\widehat{H}_{\mathrm raw} = \hbar \omega \widehat{a}^{\dagger} \widehat{a} + \hbar \gamma \widehat{a}^{\dagger^2} \widehat{a}^2$$

Assuming the initial state is a coherent one $|\alpha\rangle$ with the amplitude

 $\alpha = \sqrt{\bar{n}} \gg 1$

rotating wave approximation (mean shift due to the self-phase modulation is $2\gamma \alpha^2$):

$$\hat{a}(t) := \hat{a}(0)e^{-i(\omega+2\gamma\alpha^2)t}$$

Effective Hamiltonian for the bright state:

$$\widehat{H} = \hbar \gamma \left(\widehat{a}^{\dagger^2} \widehat{a}^2 - 2\alpha^2 \widehat{a}^{\dagger} \widehat{a} \right)$$

Linearized, lossless case, $\dot{u} = 2\Gamma\alpha^2$, $\Gamma = \gamma\tau$

$$(\Delta n)^2 = \frac{\alpha^2}{4\dot{u}^2} + 2\dot{u}^4 \ge \frac{3}{2^{5/3}} \alpha^{4/3}, \qquad \sqrt{(\Delta n_{min})^2} \sim \bar{n}^{1/3} < \sqrt{n}$$

$$(\Delta n)^{2} = \eta \alpha^{2} \frac{4 \dot{u}^{2} (1 - \eta) + 1/\eta}{4 \dot{u}^{2} + 1/\eta} \qquad \qquad \sqrt{(\Delta n_{min})^{2}} < \bar{n}^{1/3}$$

Here $\eta \leq 1$ is a quantum efficiency.

Челябинск-2024 Биленко И.А. 23.10.2024 26

QND measurements – simplified analysis

Assume coherent initial quantum state of the probe mode:

$$\Delta \phi_p = rac{1}{2\sqrt{ar{n}_p}}$$
 , $\Delta n_p = \sqrt{ar{n}_p}$

Measure not the probe phase sift but a linear combination of its phase and photon number to exclude SPF issue:

$$\phi_p(t) - \Gamma_S n_p(t) = \phi_p + \Gamma_X n_s$$
 ,

In this case:

$$\Delta n_{s \text{ meas}} = \frac{1}{2\Gamma_X \sqrt{\bar{n}_p}} \qquad \Delta \phi_{s \text{ pert}} = \Gamma_X \sqrt{\bar{n}_p}$$

Necessary condition for QND:

$$2\Gamma_X \sqrt{\bar{n}_p} \sqrt{\bar{n}_s} > 1$$

QND measurements – Hamiltonian model

$$\widehat{\mathcal{H}} = -\frac{\hbar\gamma_S}{2}\sum_{x=s,p}\, \widehat{n}_x(\widehat{n}_x-1) - \hbar\gamma_X\widehat{n}_p\widehat{n}_s\,,$$

Perform a the homodyne measurement of the quadrature \hat{X}_{ζ} of the probe:

$$\hat{X}_{\zeta} = \frac{1}{\sqrt{2}} \left[\hat{a}_p(t) e^{i\zeta} + \text{h.c.} \right] = \frac{1}{\sqrt{2}} \left[e^{i\left(\Gamma_S \hat{n}_p + \Gamma_X \hat{n}_s + \zeta\right)} \hat{a}_p + \text{h.c.} \right]$$

In the case of weak non-linearity and strong probe field we can assume that

$$\begin{aligned} |\Gamma_{S}| \to 0, \quad \bar{n}_{p} \to \infty, \quad \text{but } \Gamma_{S} \bar{n}_{p} \text{ remains finite} \\ \left(\Delta \hat{X}_{\zeta}\right)^{2} &= \frac{1}{2} - \Gamma_{S} \bar{n}_{p} \sin 2\varphi + 2\Gamma_{S}^{2} \bar{n}_{p}^{2} \sin^{2}\varphi \\ \varphi &= \Gamma_{S} \bar{n}_{p} + \Gamma_{X} n_{s} + \zeta \end{aligned}$$

In the presence of loss:

$$\bar{n}_{p}^{opt} = \frac{1}{2\Gamma_{S}\sqrt{\eta(1-\eta)}} \qquad \left(\Delta n_{s,min}^{opt}\right)^{2} = \frac{\Gamma_{S}}{\Gamma_{X}^{2}}\sqrt{\frac{1-\eta}{\eta}}$$

QND measurements – steps to experiment

For a WGM microresonators:

$$\Gamma_X = 2\Gamma_S = 2Q_{\text{load}} \frac{n_2}{n_0} \frac{\hbar\omega_0 c}{V_{\text{eff}}}$$

Material	$n_2, 10^{-16}$ cm ² /W	Q_{unload}	BW, 10 ⁶ rad/s	γ, rad/s	K ⁻¹ , dB
Al ₂ O ₃	2.8	2×10^{9}	0.63	0.06	12.8
CaF 2	3.2	3×10^{11}	0.004	0.4	8
MgF ₂	0.9 (e,o)	6×10^{9}	0.3	0.03 (e,o)	12.5
Quartz	3.4	5×10^{9}	0.25	0.1	11.6
Fused silica	2.6	9×10^{9}	0.14	0.08	11.3
LiNbO 3	20 (o)	10 ⁹	1.25	0.26 (o)	12(o)
Si ₃ N ₄	25	2×10^{8}	15.7	0.39	14
Si	100	10 ⁹	1.25	0.5	11.6

QND measurements – steps to experiment

For a WGM microresonators:

$$\Gamma_X = 2\Gamma_S = 2Q_{\text{load}} \frac{n_2}{n_0} \frac{\hbar\omega_0 c}{V_{\text{eff}}}$$

Material	$n_2, 10^{-16}$ cm ² /W	Q _{unload}	BW, 10 ⁶ rad/s	γ, rad/s	K ⁻¹ , dB
Al ₂ O ₃	2.8	2×10^{9}	0.63	0.06	12.8
CaF ₂	3.2	3×10^{11}	0.004	0.4	8
MgF ₂	0.9 (e,o)	6×10^{9}	0.3	0.03 (e,o)	12.5
Quartz	3.4	5×10^{9}	0.25	0.1	11.6
Fused silica	2.6	9×10^{9}	0.14	0.08	11.3
LiNbO 3	20 (o)	10 ⁹	1.25	0.26 (o)	12(o)
Si ₃ N ₄	25	2×10^{8}	15.7	0.39	14
Si	100	10 ⁹	1.25	0.5	11.6

QND is possible:

$$\bar{n}_p^{opt}\approx 4\times 10^6$$

$$\left(\Delta n_{s,min}^{opt}\right)^2 \approx 2 \times 10^5 < \left(\Delta n_s^{SQL}\right)^2 = 10^6$$

 $P_p = \frac{\hbar \omega_0^2 \bar{n}_p}{2Q_{load}} \approx 0.3 \,\mu W$

Parametric oscillations in dual-pumped microresonator and quantum light squeezing

Effects of cubic nonlinearity: Dual-pumped $\chi(3)$ degenerate optical parametric oscillator (DOPO):

Parametric oscillations in dual-pumped microresonator and quantum light squeezing

Effects of cubic nonlinearity: Dual-pumped $\chi(3)$ degenerate optical parametric oscillator (DOPO):

Parametric oscillations in dual-pumped microresonator and quantum light squeezing

RQC

2 dB measured squeezing - corresponds to 5 dB in chip

Thanks for the RQC Russian Stiention?

