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Abstract
We consider dynamics of a scalar field in compactification scenario of Einstein-Gauss-
Bonnet cosmology. It is shown that if the field is non-minimally coupled to curvature,
its asymptotic value under certain conditions may be shifted from the minimum of
its potential. This means that due to influence of extra dimensions a scalar field with
λφ4 potential can stabilise away from φ = 0 stable point which means an effective
symmetry breaking occurs in such a system.
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1 Introduction

The idea of modifying gravity on a cosmological scale has become widespread in
the last few decades. This has been triggered both by theoretical developments and
observations. Since the first days after Einstein’s publication of his theory there were
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proposals being made on how to incorporate it in a more unified theory. Examples of
this are Eddington’s theory of connections [1], Weyl’s scale independent theory [2],
the higher dimensional theories of Kaluza and Klein [3, 4]. Later building on Weyl’s
works Sakharov proposed that the Einstein-Hilbert action is just a first approximation
to amuchmore complicated action [5]. Stelle showed that theories with a higher power
corrections are renormalizable in the presence of matter fields at the one loop level
[6, 7]. This discovery was followed by a great interest to the potential cosmological
consequences of these theories [8]. On the other hand, the limits of General Relativity
on cosmological scales have come into focuswith the appearance of the "dark universe"
scenario (in order to fit the astrophysical observations one must assume the existence
of dark matter and dark energy). Another issues is that due to the fact that the Standard
Model of particle physics is based on perturbative quantum field theory, gravity does
not fit into it (a naive attempt to quantize gravity leads to a non-renormalizable theory).

Currently, there are a huge number of modified theories of gravity in the literature
(see [9] for comprehensive overview). Some of these have extra scalar, vector or tensor
fields in their gravitational sector; some develop Sakharov’s idea bymodifying gravity
in regions of low rather than high curvature; others expand on the ideas put forward by
Kaluza and Klein. In the context of higher dimensional gravity a very natural choice
for a modified theory of gravity is given by Lovelock gravity [10]. Lovelock models
are characterized by the fact that their actions possess higher power curvature terms but
whose variation leads to equations of motion which remain of second order derivative
in the metric.

The most studied particular case of Lovelock model is the Einstein-Gauss-Bonnet
gravity. The Lagrangian of this theory is the sum of the Einstein-Hilbert term and
so-called Gauss-Bonnet term R2 − 4RμνRμν + RμνζηRμνζη; for (3+1)-dimensional
space-time the Gauss-Bonnet term is topological and does not affect the dynamical
equations; in dimensions higher than four this term gives a non-trivial contribution to
equation of motion.

Cosmology in Lovelock gravity and, particularly in the Einstein-Gauss-Bonnet
(EGB) gravity have been studied recently rather intensively [11–40]. Quite interesting
results have been obtained including cosmological regimes which are impossible in
General relativity. While power-law vacuum solutions in EGB cosmology resembles
known Kasner solution of GR [15, 41], a non-zero cosmological constant changes the
situation drastically. In GR positive �-term ultimately leads to de Sitter solution, in
EGB gravity in addition to de Sitter solution the other anisotropic type of solutions
with constant but different Hubble parameters Hi appears [20–22]. However, these
Hubble parameters can not be totally different, the maximum number of different Hi

can not exceed 3 regardless the number of dimensions [34]. Most of such solutions are
stable (see for details [32–35, 40]) and numerical integrations show that they represent
a typical attractor for a flat multidimensional cosmological dynamics. This means that
initially totally anisotropic Universe tends to form a product of two or three isotropic
subspaces. From the perspective of dynamical compactification the situation of two
subspaces, one of which is expanding and the other is contracting, is of a particular
interest. It is not difficult to choose the coupling constant of the theory so that this
requirement is fulfilled, particular examples and numerical confirmation have been
done in [39].
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So that setting the multidimensional space metric to be a product of two isotropic
subspaces in the framework of EGB gravity is justified. This form is much easier to
study analytically and generalize to non-zero spatial curvature. The latter is important
since it is the curvature of extra dimension space that is responsible to extra space
stabilizing [19]. So that, a scenario where initially anisotropic space splits dynamically
into product of two isotropic subspaces, and later "inner" subspace stabilizes seems
to be rather general though its full treatment is still to be done (possible influence of
curvature on the first stage needs a particular investigation). Once inner dimensions
stabilize, the effective dynamics of the bigger subspace is essentially a Friedmann
dynamics [37]. This is correct for a vacuum Universe, Universe with a cosmological
constant or Universe filled with a barotropic fluid. The goal of the present paper is
to study the cosmological dynamics in the case when Universe is filled with a scalar
field. We will see that if the scalar field is non-minimally coupled with curvature, extra
terms appear in the effective dynamics of the bigger subspace after stabilization of the
inner subspace.

2 Action and equations of motion

We consider 8-dimensional spacetime M = L4 × M4 where L4 is a flat Friedman-
Robertson-Walker manifold with scale factor a(t),M4 is a 4-dimensional Euclidean
compact constant curvature manifold with scale factor b(t) and negative spatial cur-
vature. We take metric to be of the form

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
+ b(t)2

[
dψ2 + sinh2 ψ

(
dχ2

+ sin2 χdθ2 + sin2 χ sin2 θdφ2
)]

(1)

Action under consideration reads

S =
∫

M
d8x

√|g|
{(

m2
Pl + ξφ2

)
R − 2� + αLGB − 1

2
gρη∇ρφ∇ηφ − V (φ)

}
, (2)

wheremPl is the 8-dimensional Planckmass, g is the determinant of metric tensor; φ is
a spatially homogeneous scalar field with the potential V (φ);� is a bare cosmological
constant; α and ξ are the coupling constants; LGB is quadratic Lovelock term:

LGB = R2 − 4RμνR
μν + RμνζηR

μνζη (3)

where R, Rμν, Rμνζη are the 8-dimensional scalar curvature, Ricci tensor and Rie-
mann tensor, respectively.1

Equations of motion that follow from the action take the form

φ̈ + ġ

2g
φ̇ + V ′ − 2ξφR = 0 (4)

1 Hereafter Greek indices run from 0 to 7, while Latin one from 1 to 7 unless otherwise stated.
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(
m2

Pl + ξφ2
)
Gμ

ν + αEμ
ν + gνσ

{
2ξ

[
φφ̇

(
2
d

dt

∂R
√|g|

∂ g̈σμ

− ∂R
√|g|

∂ ġσμ

)

+
(
φ̇2+φφ̈

) ∂R
√|g|

∂ g̈σμ

]
− ∂

∂gσμ

[(
2�+ 1

2
gρη∇ρφ∇η+V

) √|g|
]}

=0 (5)

where

Gμ
ν = Rμ

ν − 1

2
Rδμ

ν (6)

and

Eμ
ν = 2

(
Rμ

γ ζηR
γ ζη

ν − 2Rμ
γ νηR

γ η − 2Rμ
γ R

γ
ν + RRμ

ν

)
− 1

2
LGBδμ

ν. (7)

Substituting (1) into (4) and (5) we get

φ̈ +
(
3H + 4ḃ

b

)
φ̇ + V ′ − 2ξφ

(
12H2 + 6Ḣ + 24ḃH

b
+ 8b̈

b
+ 12ḃ2

b2
− 12

b2

)
= 0 (8)

where prime stands for derivative with respect to φ,

(
− 6

b2
+ 3H2 + 2Ḣ + 4b̈

b
+ 6ḃ2

b2
+ 8ḃH

b

) [
m2

Pl + φ2ξ
]

+4ξφφ̇

(
H + 2ḃ

b

)
+ 2ξ

(
φ̇2 + φφ̈

)

+α

(
12ḃ4

b4
− 48b̈

b3
− 24ḃ2

b4
+ 12

b4
− 48

(
Ḣ + H2

)

b2
− 24H2

b2

+48b̈ḃ2

b3
− 96ḃH

b3
+ 48

(
Ḣ + H2

)
ḃ2

b2

+16b̈H2

b
+ 72ḃ2H2

b2
+ 96Hḃ3

b3
+ 32

(
Ḣ + H2

)
Hḃ

b
+ 96b̈Hḃ

b2

)

= − φ̇2

4
+ V

2
+ �, (9)

(
6H2 + 3Ḣ + 3b̈

b
+ 3ḃ2

b2
− 3

b2
+ 9ḃH

b

) [
m2

Pl + φ2ξ
]

+6ξφφ̇

(
H + ḃ

b

)
+ 2ξ

(
φ̇2 + φφ̈

)

+α

(
−36Ḣ

b2
− 72H2

b2
+ 12b̈ḃ2

b3
+ 12H2

(
Ḣ + H2

)
− 12b̈

b3
+ 36b̈H2

b

+36H3ḃ

b
+ 108ḃ2H2

b2
+ 36Hḃ3

b3
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−36ḃH

b3
+ 36

(
Ḣ + H2

)
ḃ2

b2
+ 72

(
Ḣ + H2

)
Hḃ

b
+ 72b̈Hḃ

b2

)

= − φ̇2

4
+ V

2
+ �, (10)

(
3H2 + 12ḃH

b
+ 6ḃ2

b2
− 6

b2

) [
m2

Pl + φ2ξ
]

+2ξφφ̇

(
3H + 4ḃ

b

)

+α

(
48H3ḃ

b
+ 216ḃ2H2

b2
+ 144Hḃ3

b3

+12ḃ4

b4
− 72H2

b2
− 144ḃH

b3
− 24ḃ2

b4
+ 12

b4

)

= � + φ̇2

4
+ V

2
. (11)

Since metric contains only two independent functions a(t) and b(t), we have two
independent equations (9) and (10) as well as constraint (11).

3 Numerical calculations

In what follows we deal with V = λφ4.
Compactification scenario implies that Ḣ , ḃ, b̈ −→

t→∞ 0;b(t) −→
t→∞ ba ,H(t) −→

t→∞ Ha ,

where ba = const and Ha = const are asymptotic values of the scale factor b(t) and
the Hubble parameter H(t).

Let φa be an asymptotic of scalar field φ after compactification; substituting Ḣ =
ḃ = b̈ = φ̇ = φ̈ = 0, b = ba, H = Ha, φ = φa into equations (8)-(11), we get
asymptotic equations:

4λφ3
a − 24ξ

(
H2
a − 1

b2a

)
φa = 0 ⇐⇒ φa = 0 ∨ φ2

a = 6ξ
λ

(
H2
a − 1

b2a

)
(12)

(
3H2

a − 6
b2a

)(
m2
Pl + ξφ2

a

)
+ α

(
1
b2a

− 6H2
a

)
12
b2a

= � + λφ4a
2 (13)

(
6H2

a − 3
b2a

)(
m2
Pl + ξφ2

a

)
+ α

(
H2
a − 6

b2a

)
12H2

a = � + λφ4a
2 (14)

It is easy to see that asymptotic Klein-Gordon equation (12) has non-trivial solutions
for Ha > 1

ba
if ξ is positive and for Ha < 1

ba
if ξ is negative.

In order to check stability of analytic solutions we use numerical integration of
equations of motion. We vary the parameters |ξ | and λ run from 10−12 to 103, ba runs
from 1 to 105 in Planck units, Ha is taken to be less than Planck unit, φa is evaluated
from (12) according to the Table 1:

123



  110 Page 6 of 11 D. Chirkov et al.

Table 1 Asymptotic values of the scalar field after compactification

ξ > 0 ξ < 0

Ha > 1
ba

φa =
√

6ξ
λ

(
H2
a − 1

b2a

)
φa = 0

Ha < 1
ba

φa = 0 φa =
√

6ξ
λ

(
H2
a − 1

b2a

)

Table 2 Possible forms of isotopic solution

α < 0 α > 0

� < 0 H2 = − 21m2
Pl+

√
441m4

Pl+1680α�

840α No solutions

� > 0 H2 = −21m2
Pl±

√
441m4

Pl+1680α�

840α

for α� > − 21m4
Pl

80

H2 = −21m2
Pl+

√
441m4

Pl+1680α�

840α

Once |ξ |, λ, ba, Ha, φa are fixed, we evaluate α and � from (13)–(14):

α = −
b2a

(
ξφ2

a + m2
Pl

)

4(H2
a b

2
a − 1)

(15)

� =
(
6

(
ξφ2

a+m2
Pl

)
H2
a −λφ4

a

)
H2
a b

4
a+

(
18

(
ξφ2

a+m2
Pl

)
H2
a +λφ4

a

)
b2a+6

(
ξφ2

a+m2
Pl

)

2(H2
a b

2
a − 1)b2a

(16)

The advantage to setting a solution b0 and H0 and then calculating the necessary values
of α and � is that it is possible to get the expressions in a reasonably simple form.

After that we specify initial values of dynamical variables. Normally, since we
are interested in stability of the compactification solution, we choose initial values
in the vicinity of asymptotic values b0 ∈ (0.9ba; 1.1ba), H0 ∈ (0.9Ha; 1.1Ha),
φ0 ∈ (0.9φa; 1.1φa), φ′

0 ∈ (−0.01; 0.01); but our experiments show that extension of
range of initial values (for instance, choosingφ0 ∼ 106φa) does not affect qualitatively
the results.

Besides compactified solutions there exist isotropic solutions which are defined by
the equation

420αH4 + 21H2m2
Pl − � = 0 (17)

The Table 2 below outlines possible isotropic solutions and conditions for their exis-
tence.

Initial value b′
0 of derivative of the scale factor b is found by solving constraint (11).

It is a quartic equation with respect to b′
0 and it has up to 4 real roots. Depending on

coupling constant and initial b′
0 we choose we get singular solution, isotropic solution

or compactified solution. Finding solution numerically usually means its stability with
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a b

Fig. 1 Typical compactified solution for α = 2498.5, � = −0.0003, ξ = −10−4, λ = 10−8: a
behaviour of the scale factor b(t); b behaviour of the scalar field

respect to small homogeneous perturbations. We have detected numerically compacti-
fied solutions in awide range of parameter values |ξ |, λ, ba, Ha , so a fine-tuning does
not needed. We leave a detailed analysis of the range of stability for compactification
solutions for a future work.

4 Zero cosmic acceleration case

Realistic compactification regime assumes that the asymptotic value of the Hubble
parameter H(t) is extremely small in natural units. So that, substituting H(t) = 0
and b(t) = ba we get that the evolution of the scalar field is governed by an effective
potential having this simple form

Veffa = λφ4 + 12ξ

b2a
φ2. (18)

The point of minimum φmin is solution to V ′
effa

= 0 equation. A non-zero solution
exists for negative values of ξ only:

φmin = 1

ba

√
6|ξ |
λ

(19)

So that, we got an effective Mexican hat potential for ξ < 0 starting from a simple
quartic bare potential.

In order to use this situation to generate a realistic Higgs potential we need that this
value of the scalar field is small in Planck units. This can be obtained either for large
b or small ξ .
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a b

Fig. 2 Oscillations of a the scalar field φ(t), b the scale factor b(t) for α = 2500, � = −0.0003, ξ =
−10−12, λ = 0.0001, φ0 = 2.45 · 10−6

The formulae (15)-(16) in the Ha = 0 case simplify as

α = b2a
(
ξφ2

a + m2
Pl

)

4
(20)

� = −λb2aφ
4
a + 6ξφ2

a + 6m2
Pl

2b2a
(21)

From them we can see that large b in Planck units needs large dimensionless α, so
that the case of small ξ seems more physically natural. An example is shown in
Fig. 2 where we see rapidly decaying oscillations of b and prolonged slowly decaying
oscillations of the scalar field.

As for the general case isotropic and singular solutions can also be possible out-
comes of the dynamics. Our numerical studies indicate that for a wide range of
λ ∈ (10−12; 10−1) compactification solutions disappear with increasing |ξ | (for |ξ |
being of the order of several units), and further, for |ξ | being ∼ 100, we see only
singular solutions.

So that, the presence of spatially curved extra dimensions results in a drastic change
in behaviour of the scalar field which acquires non-zero asymptotic value. We remind
a reader that in the case of a perfect fluid or minimally coupled scalar field the only
influence of extra dimensions after their stabilisation is to rescale the Newton and
cosmological constants. All other features of background cosmological dynamics are
the same as in 3+1 dimensional world without extra dimensions. On the contrary,
dynamics of a non-minimally coupled field changes qualitatively and this change does
not disappear after extra dimension stabilisation.
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5 Discussion

In this paper we have considered the cosmological behaviour of a scalar field in
Gauss-Bonnet gravity in the presence of spatially curved extra dimensions. We have
found that if the scalar field is non-minimally coupled with the Ricci scalar R, the
effects of extra dimensions do not decay after their stabilisation. Fixed point of the
scalar field evolution shifts from the minimum of its potential to the minimum of a
modified potential which acquires the additional massive term. Moreover, this term
can be negative, turning thus usual λφ4 potential of a self-interacting scalar field into
a Mexican hat potential, needed for the Higgs mechanism to work.

It is worth to point out that compactification in Lovelock Gravity without scalar
fields, once reached a regime with stabilized extra dimensions, leads to a redefinition
of effective Newton and cosmological constants in the large dimensions. However by
coupling a scalar field non-minimally to gravity leads to a more dramatic effect as it
qualitatively changes the shape of the potential of the scalar field due to extra quadratic
mass term. The quadratic mass term can be negative giving to the effective potential
the shape of a Mexican hat and therefore leading to spontaneous symmetry breaking.
The Mexican hat potential is the basic ingredient for Higgs field to give masses to
the fundamental particles of the standard model [42–45]. In the Higgs Mechanism the
quartic term of the scalar potential must be positive in order to be bounded from below,
however the negative mass term cannot be justified from fundamental principles inside
the framework of the standard model.

The idea of considering the massive term in Higgs potential as an effective one have
been developed in several ways. Gravity is involved in [46], multidimenion set-up is
used in [47]. Our model is different in the sense that in [47] the Higgs field itself is
an effective field, while in our paper scalar field with a quartic potential exists in a
bare Lagrangian, and the role of extra dimensions is to generate an extra term in the
effective potential.

If we do not require zero H , the Mexical hat form can be got even without extra
dimensions, as it was shown already in [48]. In this case we need a positive ξ which
gives a fixed point at φ2 = 6ξH2/λ. This rahter interesting case is beyond the scope
of the present paper.

We can also note that resulting formula for the new scalar field fixed point does
not contain the Gauss-Bonnet coupling constant α. It happens because the GB term
does not directly modify the Klein-Gordon equation. Its role is only to stabilise extra
dimensions while the last term in (4) is responsible for the shifting of the scalar field
fixed point. This means that any other mechanism for stabilisation, which does not
modify Klein-Gordon equation is suitable as well. For example, presence of higher
order Lovelock terms should not destroy the described picture. On the other hand,
direct coupling of GB term with the scalar field can, in principle, change the situation.
We leave detailed study of these problems to a future work.
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