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Abstract—Semiempirical equations have been derived for determining the rate of slow hindered motion of
spherical particles in a liquid, which agree with empirical data with a high degree of accuracy. It has been
shown that the variational principle of the minimum intensity of energy dissipation can be used in determin-
ing the rate of hindered motion.
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INTRODUCTION
Determining the rate of hindered motion of dis-

persed particles, as well as solving the similar problem
of finding the velocity of a f luidizing agent in a f luid-
ized bed, is performed by analytical, semiempirical,
and empirical methods.

A purely analytical approach was used in cell mod-
els [1]. Methods based on the theory of effective vis-
cosity and methods based on the determination of
resistance coefficients are classified among semiem-
pirical methods. In a number of studies [2–4], cell
models and models based on resistance coefficients
were developed using the variational principle of the
minimum intensity of energy dissipation.

It should be noted that analytical and semiempiri-
cal computational methods yield large errors in the
region of the high concentrations of the dispersed
phase. The exception is the Happel cell model, the
error of calculation by which reaches 100%, but at very
high concentrations of the solid phase that verge on a
fixed bed, and the results of calculation approximate
to experimental data. This can be explained by the fact
that the imperfection of the model itself is compen-
sated for by the error of calculation at high concentra-
tions of dispersed particles.

Highly concentrated disperse systems occur in f lu-
idized beds, in sedimentation processes, and in the rise
of an ensemble of bubbles [5].

The objective of this study is to determine the rate
of slow hindered settling of spherical particles and
prove that the rate of hindered motion is the conse-
quence of the self-organization of a system of dis-
persed particles and can be determined from the vari-

ational principle of the minimum intensity of energy
dissipation, as was assumed in [2–4].

HINDERED MOTION OF PARTICLES
AT HIGH CONCENTRATIONS
OF THE DISPERSED PHASE

We consider the ideal case of the motion of a liquid
in the channels of a uniform fluidized bed that are
assumed to be straight with the constant equivalent
radius Re. We also assume that the velocity of the liq-
uid near the surface of spherical monodisperse solid
particles is zero. The pressure gradient in the f luidized
bed with the fraction of the dispersed phase ϕ is equal
to the gravity of the unit volume of the f luidized bed
with the sign reversed:

(1)
With this taken into account, the balance of external
and internal forces per unit volume of the liquid f low-
ing in the channels of the f luidized bed is expressed by
the following equation in cylindrical coordinates:

(2)

Equation (2) serves as a basis for determining the
dependence of the rate of hindered motion of particles
on the fraction of the dispersed phase.

It is known that the Hagen–Poiseuille equation
can be derived using the variational method.

Since one of the objectives of this study is to prove
that the rate of slow hindered motion can be deter-
mined by the variational method and in view of the
fact that the motion of a liquid through the channels of
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a f luidized bed has specific features, it is necessary to
show that the principle of the minimum intensity of
energy dissipation can be applied in this case. To
accomplish this, it is sufficient to show that Eq. (2)
corresponds to the functional that gives the minimum
intensity of dissipation.

The functional in the form of the intensity of dissi-
pation under the conditions of laminar motion in the
channels of a f luidized bed with the length L can be
written as follows:

(3)

The function Vid(r) that gives the extremum of the
functional I(Vid) is derived from the Euler–Lagrange
equation:

(4)

where F is the integrand of the functional.
At a constant flow rate of the liquid, there is the fol-

lowing additional condition for variational problem (3):

(5)

With allowance for additional condition (5), the func-
tion F in Eq. (4) is replaced with the function Ф:

(6)

where λ is the Lagrangian multiplier.
In this case, from the Euler–Lagrange equation,

we derive the following second-order differential
equation:

(7)

To observe the balance of external and internal
forces per unit volume of the liquid, λ in Eq. (7) must
have a value of 2, which corresponds to the complete
identity of Eqs. (2) and (7). Thus, it can be considered
that the problem of finding the superficial velocity of a
liquid in a uniform fluidized bed or the equivalent
problem of finding the rate of hindered settling, the
solving of which is based on Eq. (2), can be solved by
the variational method.

Solving Eq. (2) with the subsequent determination
of the volumetric f low rate of the liquid through the
cross section of the channel of the f luidized bed leads
to the following relationship for the average velocity of
the liquid passing through the bed in the ideal case:

(8)
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In the case of a granular bed of spherical particles
with diameter d, the equivalent diameter of virtual
cylindrical channels is calculated using the equation

(9)

From Eqs. (8) and (9), we derive the following rela-
tionship:

(10)

The average velocity of the liquid is related to the
superficial velocity Vid,sup by the equation

(11)

Taking into account (11), we derive the following
relationship:

(12)

It should be noted that a similar approach was used
by Kozeny, Carman, and Blake [6] for deriving the
pressure gradient in a fixed granular bed based on the
Hagen–Poiseuille equation.

We now write Eq. (12) in the dimensionless form

(13)

In view of the fact that the channels of a f luidized
bed are tortuous and have a nonuniform cross section
and that particles in the f luidized bed can rotate, the
actual velocity Vsup differs from the ideal velocity
Vid,sup:

(14)

Taking into account (14), we derive the following
equation for the actual superficial velocity:

(15)

From analogy between fluidization and settling, it
is known that the actual rate of hindered settling of
particles is equal to the superficial velocity of a liquid
in a f luidized bed Vsup. Therefore, Eq. (15) can be used
to determine the rate of hindered settling.

Since Stokes’ law is valid at small values of Re (slow
flow), Eq. (15) can be written for this case as follows:

(16)

The function f(ϕ) = (1 – ϕ)3/(4Kϕ) is the ratio of
hindered settling velocity to free settling velocity.
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We write f(ϕ) in the following simplified form:

(17)

where A = 1/(4K).
The complexity of the problem of the motion of a

liquid through tortuous channels with a variable cross-
sectional area necessitates using experimental data for
finding the value of A.

The ratio of the hindered settling velocity to the free
settling velocity of fine-dispersed spherical particles in
the laminar region is determined with a sufficient degree
of accuracy using power-law functions [7]:

(18)

(19)

(20)

The Reynolds number Re0 is determined from free
settling velocity.

Since the values of Re < 2 correspond to the diam-
eters of particles that differ from the diameter of col-
umns dcol by several orders of magnitude, the quanti-
ties 19.5d/dcol and 17.5d/dcol were not taken into
account in calculating the value of n.

The values of coefficients A that give the closest agree-
ment between Eqs. (17) and (18) at Re0 < 0.2 were calcu-
lated using the following system of equations:

(21)

(22)

For convenience of calculation, the fraction of the
liquid phase ε = 1 – ϕ was used in Eqs. (21) and (22).

Integral (17) was calculated between the limits ϕ1 =
0.25 and ϕ2 = 0.55. The upper limit ϕ2 = 0.55 is close
to a fixed bed. As calculations have shown, at particle
concentrations lower than ϕ1 = 0.25, discrepancies
between Eqs. (17) and (18) become considerable. This
is probably associated with the fact that, at low con-
centrations of the solid phase, channels through which
a liquid f lows break down and, accordingly, the pro-
posed model of the motion of dispersed particles is
bounded by the range of the fraction of the dispersed
phase from 0.25 to 0.55. Equations (16) and (17) are
applicable for the values of Re0 < 0.2, when Stokes’ law
gives fairly small disagreement with experimental data.
In the case of slow motion (0 < Re0 < 0.2), the value of
coefficient A calculated by Eq. (22) is 0.16.
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Thus, for the slow motion of spherical particles, the
ratio between the rates of hindered and free motion in
the range of the fractions of the dispersed phase from
0.25 to 0.55 can be determined as follows:

(23)

The mean difference between the values calculated
by Eqs. (18) and (23) is 4.7%.

HINDERED MOTION AT LOW VALUES
OF  THE FRACTION

OF THE DISPERSED PHASE
The hindered settling velocity of spherical particles

at low concentrations of the dispersed phase in the
interval of 0 < ϕ < 0.25 at Re0 < 0.2 can be determined
based on the representation of a suspension as a New-
tonian fluid, which has a higher (effective) viscosity
μeff, which is the function of the fraction of the dis-
persed phase.

The dimensionless effective viscosity , which is
the ratio between the viscosity of a suspension and the
viscosity of a dispersion medium, can be determined
over a fairly wide range of the fractions of the dispersed
phase (0 < ϕ < 0.4) using the following experimentally
found formula [8]:

(24)
At low values of ϕ, formula (24) transforms into the

Einstein equation.
Strongly approximate consideration of the settling

of a foreign spherical particle in a medium with the
effective viscosity and density of a suspension in calcu-
lating the buoyancy force leads to the following ratio
between the rates of hindered and free settling of
spherical particles in the range of Re0 < 0.2:

(25)

In deriving Eq. (25), it was assumed that the resis-
tance coefficient in hindered settling in a medium with
effective viscosity and in a dispersion medium com-
plies with Stokes’ law.

It follows from [3] that this equation yields under-
estimated results, which is associated with the overes-
timated value of the buoyant force. It should be noted
that this expression of the buoyant force contradicts
the assumption of the uniformity of the motion of par-
ticles in settling. The elimination of this contradiction
leads to the weaker dependence of f(ϕ) on the fraction
of a continuous phase:

(26)

In turn, Eq. (26) corresponds to the underesti-
mated values of f(ϕ) when compared to empirical data.
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Fig. 1. Dependence of the ratio between the hindered and
free settling velocities of particles on the fraction of the dis-
persed phase: (1) formula (18), (2) formula (23), (3) for-
mulas (27) and (29), and (4) Happel equation.
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Calculations have shown that the geometric aver-
age from Eqs. (25) and (26) gives the smallest devia-
tion from empirical data:

(27)

The mean difference between the values of  f(ϕ)
calculated using Eqs. (27) and (18) is 1.2%.

The same result can be derived from the interrela-
tionship between f(ϕ) and dimensionless effective vis-
cosity [8]:

(28)

The two values of the power m are used in this for-
mula: m = 1 (the Kynch relationship) and m = 2 (the
Hawksley relationship). Here, the function f(ϕ) is cal-
culated using the cell model for the purpose of finding
effective viscosity. If the geometric average for the
function (1 – ϕ)m at values of m = 1 and m = 2 is taken,
we have formula (27) as a result, with formula (24)
being used to calculate effective viscosity.

Equations (25)–(28) were derived based on the
uniform distribution of particles throughout the bed,
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THEORETICAL FOUNDATIONS OF
whereas, in settling, the fraction of the dispersed phase
is nonuniformly distributed due to the integration of
particles into groups [2–4]. In this case, the true frac-
tion of the dispersed phase is greater than the average
fraction. If we assume that the true value ϕtrue exceeds
the average value ϕ by 12.5%, formula (26) transforms
into the following equation:

(29)

The mean difference between the values of f(ϕ) cal-
culated using Eqs. (27) and (29) is less than 1%.
Therefore, it can be assumed that the cause of the
overestimated values of f(ϕ) calculated using Eq. (26)
is the integration of particles into groups in settling.

As can be seen from Fig. 1, where empirical equa-
tion (18) is compared with semiempirical dependences
(23), (27), and (29) and the Happel theoretical equa-
tion [6], the derived semiempirical dependences are
very close to the empirical equation, whereas the Hap-
pel theoretical equation deviates to a considerable
extent from both empirical and semiempirical depen-
dences. Taking into account the higher accuracy of
empirical equation (18) [9], we can infer that theoret-
ical approaches are sufficiently valid in the derivation
of semiempirical relationships for the ratio between
the rates of hindered and free settling.

CONCLUSIONS
Summing up, we can infer that the problem of

determining the rate of slow hindered settling is solved
using Eq. (23) for high values of the fraction of the dis-
persed phase (0.25 < ϕ < 0.55) and Eq. (27) or (29) in
the region of low concentrations of dispersed particles
(0 < ϕ < 0.25). It can also be inferred that slow hin-
dered motion obeys the variational principle of the
minimum intensity of energy dissipation.

NOTATION

d particle diameter
de equivalent diameter of channels
g acceleration due to gravity
K correction factor
Re equivalent radius of channels
Vid velocity of the liquid in channels in the ideal case
Vid,sup superficial velocity of the liquid in the ideal case
Vsup superficial velocity of the liquid
ε fraction of the liquid phase
λ Lagrangian multiplier
μ dynamic viscosity

reduced effective viscosity
ρ liquid density

( ) − ϕϕ =
+ ϕ + ϕ2

1 1.125 .
1 2.813 15.82
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Translated by A. Uteshinsky

ρs particle density
ϕ fraction of the dispersed phase
Re Reynolds number for the hindered motion of parti-

cles
Re0 Reynolds number for the free motion of particles
Reid Reynolds number in the ideal case of motion in 

channels
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