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Abstract—An algorithm is proposed to determine failures for a redundant inertial sensor unit by
means of the guaranteeing estimation method. The numerical testing confirms the efficiency of the
proposed algorithm.
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1. INTRODUCTION

To improve the reliability of navigation systems, researchers apply redundant inertial sensor units,
that is, angular velocity sensors and accelerometers. Instead of three mutually orthogonal sensor
elements (in each unit), six sensors are used. It is assumed that, at one time instance, no more than two
failures may occur in all channels of each unit. We need to detect possible failures in the measurement
channels of the units. In other words, we need to determine the presence of failure and find out in which
channel it occurred.

For failure detection the nature of abnormal errors in the readings of sensors is insignificant. The
actions to detect and localize failures are identical for both units of sensor elements. Therefore, in this
work we consider only the unit of angular velocity sensors.

We propose the guaranteeing approach to determine failures the advantage of which is that the
failure detection problem is posed as the optimal estimation problem. In addition to that, we succeed
in computing the optimal guaranteed error of determining the corresponding parameters.

2. FORMULATION OF THE ORIGINAL PROBLEM

Let measurements delivered by a unit of angular velocity sensors have the form (at a given time
instance):

z = Gq + �, (1)

where z = (z1, . . . , z6)
T ∈ R

6 is a vector composed of readings of the unit of angular velocity sensors;
q ∈ R

3 is the vector of estimated angular velocity components in projections onto the instrument frame;
� = (�1, . . . , �6)

T ∈ R
6 is the vector composed of measurement uncertainties.
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The matrix G is given by the relation

G =

⎛
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the angle ϕ is defined by the equalities sinϕ =
√

2
3 , cosϕ = 1√

3
.

The original problem is to establish the presence of failure (failures) and to determine where it
occurred.

3. PROBLEM OF GUARANTEEING ESTIMATION

Firstly, we consider an auxiliary problem of guaranteeing parameter estimation [1–6] in the presence
of two failures in measurement errors.

As above, suppose that the measurements are given by formula (1). We need to estimate the scalar
value l = aTq, where a ∈ R3 is a given vector.

Let two failures be allowed in the measurement errors. Then the model of measurement errors is
given by

� ∈ P, P =
⋃
ω∈Ω

P(ω),

P(ω) =
{
� ∈ R6

∣∣ |�i| � σ, i = 1, . . . , 6, i /∈ ω
}
,

where Ω is the set of all pairs ω = {i1, i2} (i1 < i2) from the set {1, . . . , 6} and σ is a given positive value
characterizing the maximum measurement error without failures.

Note that the set P is nonconvex and unbounded, in contrast to the classical formulations of the
problems of guaranteeing estimation of parameters, where |�i| � σ. For instance, in the case of three
measurements and one failure, this set is a sum of mutually orthogonal prisms in R3.

Consider all possible estimators l̂ = s(z) for l = l(q). We also introduce the set of the parameters
q ∈ R3 consistent with a given vector z:

Q(z) =
{
q ∈ R3

∣∣Gq = z − �, � ∈ P
}
.

Note that the set Q(z) can be disconnected, that is, can consist of isolated parts.
The problem of (a posteriori, that is, for a given z) guaranteeing estimation is in finding the estimator

s0(z) such that for all other estimators s(z) it is true that

max
q∈Q(z)

|l(q)− s0(z)| � max
q∈Q(z)

|l(q)− s(z)|.

The minimum and maximum admissible values of l are determined by solving the following extremal
problems:

lmin = min
q∈Q(z)

aTq, lmax = max
q∈Q(z)

aTq.

It is clear that the optimal guaranteeing a posteriori estimator is given by

s0(z) =
1

2
(lmax + lmin) (2)
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and the a posteriori optimal guaranteeing estimation error is determined by the formula

δ0(z) = max
q∈Q(z)

|l(q)− s0(z)| = 1

2
(lmax − lmin). (3)

Let us discuss the procedure for computing lmin and lmax. At failures in measurements with indices
from ω, we introduce the set of the vectors q ∈ R3 that are consistent with the vector z:

Qω(z) =
{
q ∈ R3

∣∣ |zi −Giq| � σ, i = 1, . . . , 6, i /∈ ω
}
.

Then

Q(z) =
⋃
ω∈Ω

Qω(z), lmax = max
ω∈Ω

Iω(z), lmin = min
ω∈Ω

Jω(z),

Iω(z) = max
q∈Qω(z)

aTq, Jω(z) = min
q∈Qω(z)

aTq. (4)

The problems dual to problems (4) [6, 7] are given by

Iω(z) = min
Xω

f(x), f(x) =

6∑
i=1

(σ|xi|+ zixi) , (5)

Jω(z) = −min
Xω

g(x), g(x) =
6∑

i=1

(σ|xi| − zixi) , (6)

Xω =

{
x ∈ R6

∣∣∣∣∣
6∑

i=1

GT
i xi = a, xj = 0, j ∈ ω

}
. (7)

Then the optimal estimator s0(z) and the optimal estimation error δ0(z) are determined by formulas (2)
and (3).

It is easy to show that problems (5)–(7) are equivalent to the linear programming problems if xi is
replaced with ui − vi and |xi| is replaced with ui + vi, ui, vi � 0, i = 1, . . . , 6. Therefore, they can be
efficiently solved, for instance, by the simplex method [7] or by the interior point method [8].

To compute lmax and lmin, we need to solve at most 2C2
6 = 30 linear programming problems.

4. REDUCTION OF THE FAILURE DETECTION PROBLEM TO ESTIMATION PROBLEM
To solve the failure detection problem, we consider it to be the estimation problem. To estimate the

components of the vector of measurement error �i, i = 1, ..., 6, we propose to solve 6 problems of optimal
guaranteeing estimation for the parameter l = aTq at a = Gi, where Gi are the rows of the matrix G.
After that, by obtaining the estimate for Giq, we find the estimate for the measurement error �i by the
formulas (see (2) and (3)):

�̂i = zi − si0(z), where si0(z) = s0(z) at a = Gi, i = 1, ..., 6, (8)

and the estimation errors are

δ̂�i = δi0(z), where δi0(z) = δ0(z) at a = Gi, i = 1, ..., 6. (9)

Next, we check the condition

|�̂i ± δ̂�i| � Δ, where Δ is a given threshold. (10)

From inequality (10) we establish the fact of failure and the index of the failed channel. Thus, the problem
of detecting two failures reduces to solving at most 30× 6 = 180 linear programming problems.

In the numerical solution of the variational problems (5)–(7), due to their small dimension, the
corresponding computational load is rather moderate. In any case the optimal guaranteeing estimation
problem formulated here can serve as the reference problem for estimating the quality of functioning
of other (onboard) algorithms that can be simpler to implement. We emphasize that the guaranteeing
approach also allows obtaining the optimal estimation error.
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Fig. 1. Estimation error for the second channel.

5. NUMERICAL TESTING OF THE ALGORITHM
In this work we performed testing of the proposed algorithm for failure detection in the measurements

obtained by means of an simulation program.
We chose the threshold value equal to Δ = 10 deg/h. We assumed the estimates of measurement

errors �i whose absolute value is larger than Δ to be abnormal. Everywhere below, as the unit of
measurement we use deg/h.

In our testing we prescribed the following value of the vector of parameters q:

q = (−172.82, 604.19, −1284.63)T.

In our modeling we took the upper bound of absolute values for the regular (nonfailed) fluctuation
measurement error σ to be equal to 1 deg/h.

The values of the fluctuation errors are given by

�f = (0.50, 0.10, −0.80, −0.01, −0.02, 0.30)T.

Suppose that failures in the second and third measurements occurred simultaneously: �2 = 20 + �f2
and �3 = −50 + �f3 , that is, the failures are equal to 20 and −50, respectively. Taking into account the
introduced values of q and �, the measurements computed by formula (1) are given by

z = (−393.04, 1085.35, −612.73, −593.11, 1254.79, 761.19)T.

We solved the linear programming problems (5)–(7) in MATLAB by means of the linprog function
that implements the interior point method [8].

For instance, in solving problems (5)–(7), for the second channel we obtained that for all values
of ω containing at least one index of failed channel, the values of the objective functions Iω(z) and
Jω(z), are −∞ and ∞, respectively. This reflects the case when the corresponding set Qω(z) is
empty. The functionals took on finite values for the only pair ω = (2, 3) containing the indices of the
failed measurement channels. The values lmin and lmax are 1051.72 and 1057.20, respectively. Similar
computations were also carried out for other measurement channels.

The estimates of residues obtained by formulas (8) are

�̂ = (−0.00, 20.89, −51.35, −0.00, −0.00, −0.00)T.

The corresponding estimation errors obtained by formulas (9) are determined by the equality

δ̂� = (1.00, 2.74, 2.74, 1.00, 1.00, 1.00)T.

After checking condition (10), we established that failures were detected in the second and third
measurement channels.

Figure 1 presents the results of computations for the second channel. We can see that the entire
segment lies to the right from the threshold, and condition (10) is met and the failure is detected.

For the third channel the corresponding figure is similar to Fig. 1, and the guaranteed confidence in-
terval also completely lies beyond the threshold value Δ. For other nonfailed channels the corresponding
confidence intervals lie to the left from the threshold.

Note that applying the failure detection methods based on the classical estimation methods (the
least-squares method and the least absolute deviation method) for such a small number of measure-
ments (six measurements) yields no advantages against the guaranteeing estimation method. Using
the numerical modeling we established that the least-squares method does not identify even a single
failure and the least absolute deviation method detects a single failure, but does not identify two failures.
In addition, unlike the guaranteeing approach, using the traditional methods does not allow obtaining
guaranteed confidence intervals for the estimates.
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6. CONCLUSIONS

In this work we solved the problem of failure detection in a redundant unit of inertial sensors using the
guaranteeing estimation method. The proposed algorithm allows not only establishing the presence of
two simultaneous failures, but also obtaining the guaranteed confidence intervals for failure estimation.
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