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Abstract—A polyhedral methodology for optimization of dis-
crete time control processes is exploited. A problem of polyhedral
discrete time dynamic game of pursuit is defined. A polyhedral
strategy of pursuit based on the concept of a guaranteed blunder
is proposed.

I. ELEMENTS OF THE POLYHEDRAL OPTIMIZATION
THEORY

In the last years development of methods for analysis and
synthesis of control systems based on nonsmooth analysis
[1], [2] gains popularity in the theory and application of
automatic control. Thus, in the context of nondifferentiable
optimization of control processes the polyhedral optimization
methodology [3], [4] appears quite promising. It targets two
cardinal problems of modern automation: account of direct
measures of control process quality and account of direct
resource and phase constraints.

Consider a class of dynamic controllable objects described
by a linear difference equation of state vectors in the form of

x(t+ 1) = A(t)x(t) +B(t)u(t), (1)

where t ∈ T is discrete time, T = [0 : T − 1] ⊂ Z+ is
the interval of control, T ≥ 1 is the final (terminal) time
instant, x = col(x1, x2, . . . , xn) ∈ X ⊂ Rn is a column vector
of state variables, u = col(u1, u2, . . . , ur) ∈ U ⊂ Rr is a
column vector of controlling variables, A : T → Rn×n and
B : T → Rn×r are functional matrices, X is state space, Z+

is the nonnegative integer set, Ri is i-dimensional real linear
space.

A. Main concepts of polyhedral formalism

First of all we consider two designs of convex analysis [3]:
polyhedral functions and polyhedral norms.

A polyhedral function f(x) : X = Rn → R is a function,
the epigraph of which is a convex polyhedron. The most
important constructive property of any polyhedral function
f(x) is the possibility of its disjunctive expansion. That is its
representation in the form of a function of discrete (pointwise)
maximum:

f(x) =
N
∨
i=1

ϕi(x) = max{ϕ1(x), ϕ2(x), . . . , ϕN (x)},

where all ϕi(x) are affine functions

ϕi(x) = ai0 + 〈ai, x〉, ai0 ∈ R, ai ∈ X.

A polyhedral norm of a vector is a polyhedral function of
its components. For example, cubic (Chebyshev) norm:

||x||∞ = max
1≤i≤n

|xi|.

B. Formalization of polyhedral quality criteria for control
processes

It is clear that the requirements for any dynamic structure
of trajectories of controllable object movement and also for
resources (cost) of controlling actions, necessary for the real-
ization of this movement, must be represented by the structure
of the quality criterion.

Let x∗ denotes the goal state of the controlled object. We’ll
need the following values:

ε(t) = x(t)− x∗, ∆x(t) = x(t+ 1)− x(t),

∆u(t) = u(t+ 1)− u(t).

They characterize respectively: distance of the object’s state
to the goal state, phase speed of the object and intensity
of controlling action at current time instant. Also, choose
polyhedral norms:

Hε : X→ R, H∆x : X→ R, Hu : U→ R, H∆u : U→ R.

The quality of a control process at the current time instant
we define by measures of control exactness and inputs of con-
trol. They have a polyhedral structure and are formulated by a
combination of the values Hε(ε(t)), H∆x(∆x(t)), Hu(u(t)),
H∆x(∆x(t)). We shall exemplify these parameters of quality
with the following notations:
• polyhedral measures of control accuracy

P(t) = λε(t)Hε(ε(t)) + λ∆x(t)H∆x(∆x(t));

P(t) = max {λε(t)Hε(ε(t));λ∆x(t)H∆x(∆x(t))} .

• polyhedral measures of control inputs

Q(t) = λu(t)Hu(u(t)) + λ∆u(t)H∆u(∆u(t));

Q(t) = max {λu(t)Hu(u(t)), λ∆u(t)H∆u(∆u(t))} .

Here λε(t), λ∆x(t), λu(t), λ∆u(t) are nonnegative weight co-
efficients. They in particular may have the form of exponential
functions: cvtv , v ∈ Z+, cv ∈ R.

Notice that the polyhedral measures P(t) and Q(t) are re-
lated to discrete time t, therefore they are discrete themselves.



From the introduced accuracy and resource measures we
may form different polyhedral criteria of quality of control
processes. Let T + = [1 : T ]. Consider the following examples:
• polyhedral terminal criterion (Mayer type)

FM = P(T );

• polyhedral integral criteria (Lagrangian type)

FL =

T∑
t=1

P(t) +

T−1∑
t=0

Q(t);

FL = max
t

{
{P(t), t ∈ T +}

}
+ max

t
{{Q(t), t ∈ T }} ;

FL = max
t

{
{P(t), t ∈ T +} ∪ {Q(t), t ∈ T }

}
;

• polyhedral mixed criterion (Bolza type)

FB = FM + FL.

The appearing values x(T + 1) and u(t) in the above
criteria are not a part of the mathematical model of controllable
object (1). Formally we may define them as:

x(T + 1) = x(T ), u(T ) = u(T − 1).

Let us give an example of the mentioned criteria which
is very promising for optimal stabilization problems. Assume
that the purpose of control is stabilization of an object into
its equilibrium state x∗ = 0. Also it is necessary for any
(deviated) starting state x(0) ≡ x0 6= 0 the object to be quited
down in a final (terminal) time instant t = T : x(T ) = 0.

Let u(t) = u(t, x0) and x(t) = x(t, x0) be the current
values of control and state of the controlled object in its motion
from the starting state x0, and ∆u(t) and ∆x(t) be the speeds
of their change respectively.

In order to estimate the quality of a stabilization process
we offer to use the following (introduced in in the works [3],
[4]) polyhedral loss function, taking into account the dynamic
structure of phase trajectories and controlling actions:

F = max
0≤t≤T−1

Q(x(t),∆x(t), u(t),∆u(t)). (2)

Here Q(x,∆x, u,∆u) is a polyhedral measure of control cost

Q(x,∆x, u,∆u) = λ1(t)q1(x(t)) + λ2(t)q2(∆x(t)) +

λ3(t)q3(u(t)) + λ4(t)q4(∆u(t)),

where q1 : Rn → R, q2 : Rn → R, q3 : Rr → R, q4 :
Rr → R are some positive homogeneous polyhedral functions,
and all λi(t) are nonnegative weight coefficients that yield∑
i=1:4 λi(t) > 0 for all t = 0 : T − 1.

C. Polyhedral Chebyshev criterion

Consider another example of a polyhedral criterion for
quality of stabilization processes. Here we have the same goal
for the control process — stabilization of an object into its
equilibrium point x∗ = 0. As a degree of deviation from the
equilibrium state of an object we take the polyhedral measure

P(t) = Hx(x(t)) = ||x(t)||∞ = max
i∈1:n

|xi(t)|.

Then the criterion for quality of a stabilization process is the
maximum value of P(t) on the interval, in which the system
functions:

F = max
t
{P(t)} = max

0≤t≤T−1
||x(t)||∞. (3)

Criterion (3) finds the maximum dynamic mistake (that is
the maximum amplitude of all state variables) in a stabiliza-
tion system and is known as criterion of uniform approach,
maximum deviation and Chebyshev’s criterion.

The most successful attempts in applying the polyhedral cri-
terion for quality (3) were executed in the 1060s by A. A. Per-
vozvansky. He worked on uniform optimization of control pro-
cesses (see [6]). Later many honored scientists repeatedly con-
firmed the special importance of Chebyshev’s criterion regard-
ing applied control problems. We ought to outline some of the
russian speaking authors: E. A. Barbashin, N. N. Krasovskii,
A. B. Kurzhanskii, Ju. S. Osipov, Ja. Z. Cypkin, K. A. Lurie,
V. A. Jakubovich, V. F. Demyanov, V. M. Kein, B. T. Polyak,
R. Gabasov, F. M. Kirillova, V. A. Troickii, A. G. Chencov,
A. E. Barabanov, O. N. Granichin, S. F. Sokolov and others.

D. Formalization of the polyhedral optimization problem

The process of controlling an object of type (1) is a union of
control influence-program application U = {u(t), t ∈ T } and
its generated phase motion trajectory X = {x(t), t ∈ T +}.

Suppose that the control influence implements a program-
position control strategy as flexible, cyclically updated pro-
grams.

The general problem of polyhedral optimization of discrete
control processes consists in finding a control influence u(t)
for object (1) such that the terminal goal of control is achieved

x(T ) ∈ X∗ = {x ∈ X : H(x) ≤ p∗}, H : X→ R, p∗ ∈ R,

and u(t) is optimal in the terms of criterion

F (X,U)→ extr, F : X× U→ R,

with respect to phase and resource constraints

P (x(t)) ≤ p(t), E(u(t)) ≤ q(t),
t ∈ T , p(t) > 0, q(t) > 0, P : X→ R, E : U→ R.

The specifics of this problem are such that all of its com-
ponents (terminal goal of control, optimality criterion, phase
and resource constraints) are of polyhedral structure — i.e.
the functions H(x), P (x), E(u), F (X,U) are polyhedral.
Therefore, we face the class of polyhedral programming
problems [4]. The algorithms that cope with the latter are based
on linear programming computational methods.

The polyhedral methodology is a base that allows successful
solving of many key control processes optimization problems,
including optimization problems of observation and control
processes under conditions of uncertainty about regular, con-
flict and critical situations [4].

As an example we will address a problem of polyhedral
conflict control of competing objects in pursuit conditions.



II. POLYHEDRAL METHODOLOGY FOR GAME CONTROL
OPTIMIZATION IN PURSUIT CONDITIONS

Many applied control problems source from ones that
are objects of study in the pursuit game theory. One
of the first to address and thoroughly study the pursuit
problem was D. L. Kelendzheridze in 1961. Fundamen-
tal results in the field of dynamic pursuit games have
been obtained in the works of R. Isaacs, A. E. Bryson,
W. H. Fleming, A. Friedman, N. N. Krasovskii, A. I. Subbotin,
A. G. Chencov, V. E. Tretiakov, V. M. Kein, L. S. Pon-
triagin, E. F. Mishenko, M. S. Nikolskii, B. N. Pshenichny,
F. L. Chernousko, L. A. Petrosjan, O. A. Malafeev, G. V. Tom-
skii, V. I. Zubov, M. I. Zelikin, E. N. Simakova, E. M. Vais-
bord, V. I. Zhukovskii, N. L. Grigorenko and others [7], [8],
[9], [10], [11].

A. Discrete dynamic pursuit games

In this section we will address one class of discrete dy-
namic pursuit games [12], [13]. Suppose that two competing
players are described as moving objects. Consider a discrete
interception game in which the first player P (Pursuer) tries
to intercept the second player E (Evader). The process of this
game is described with a linear difference equation

x(t+ 1) = Ax(t) + u(t) + v(t), (4)

where t ∈ T is discrete time, T ⊂ Z+ is the time interval of
the game process, x ∈ X is a game position — a n-dimensional
vector of player P ’s relative coordinates in a system connected
to player E, X = Rn is game space, u ∈ U and v ∈ V are n-
dimensional control vectors of players P and E respectively,
U ⊂ Rn and V ⊂ Rn are sets of control, A ∈ Rn×n.

Suppose the sets of control U and V are polyhedral and
both players possess full information about the current game
position — i.e. vector x.

The strategies of players P and E we denote by ξ and η
respectively:

ξ = u(·) ∈ U , η = v(·) ∈ V,

where U and V are feasible sets of strategies

U = {u(·) | u(t) ∈ U, t ∈ T }, V = {v(·) | v(t) ∈ V, t ∈ T }.

Assume that the game in question begins in time instant
t = 0 from a starting position x0 : x(0) = x0. The goal of
player P consists of catching player E. And, conversely,
player E must avoid being caught. This is a game of quality
(with an outcome of boolean type), in which the pursuit
is ceased in case of P catching E or running out of time
t = T . The interception is considered successful if the distance
between the players becomes less than some a priori fixed
constant ρ > 0.

With G ⊂ X we shall denote an object terminal set deter-
mining the interception condition. Therefore, the game ends if
vector x enters set G. Assume the moment of interception t∗

is determined. Let set G be polyhedral:

G = {x | ||x|| ≤ ρ},

where ||x|| is a polyhedral norm of vector x ∈ X.
As a measure of proximity of the game process to its ending

we use the distance of the current position x to the origin,
defined in the previously chosen polyhedral metric:

γ(x) = ||x||. (5)

The game problem of interception consists in establishing
a strategy — i.e. a means of players forming control laws u
and v. Hence, player P approximates (minimizes its blunder)
to a rendezvous point, and player E maximizes first player’s
blunder.

The above described class of linear discrete dynamic pursuit
games has a polyhedral structure. That is why the authors
name it polyhedral [14]. This class is also known as polytopic
games [15]. Note that the first mention in the Russian language
literature of the term “polyhedral game” is in a work of
A. S. Belenskii [16], where it is used only for matrix games
with polyhedral feasible sets of players’ strategies.

The formulated discrete dynamic pursuit game can be inter-
preted as a problem of controlling an object under conditions
of uncertainty [17]. Indeed, consider, for instance, the problem
of stabilization an object into its equilibrium state (4). The
controller’s goal is to choose a control law that yields the
minimization of the quality criterion (5) for the stabilization
process. This choice is made regardless of the environment’s
aggressive behavior, assuming that it maximizes the dis-
turbance of the controlled object. Therefore, the controller
synthesis results in the need of using a game theory approach
and formalization of the stabilization problem as a dynamic
pursuit game.

B. Polyhedral pursuit strategy based on the principle of a
guaranteed predicted blunder

As a basis of pursuit process control we use the idea of
constructing a multi-step forecast (with fixed depth) on the
future game development with subsequent estimation of the
predicted cost — a terminal blunder. On every game step
the Pursuer, using information on the current game state,
generates a pursuit plan. It is a strict program based on a
prognostic kinematic model of the game. The Pursuer takes
into consideration the maximum possible counteraction of the
Evader, and as a result constructs a control strategy oriented
towards the worst game outcome — a maximum predicted
terminal blunder.

The next five statements have critical effect on the proposed
problem solution.
• The feasible sets of strategies available to the players

are limited to “pure strategies” — i.e. strictly determined
strategies ξ and η.

• The players’ choice of control laws on every game step is
based on a T-step plan (prediction) of the game’s future
development (T ≥ 1). For every current time instant t
the future point th = t + T we call horizon of planning
(prediction), the value T — prediction depth, and the
time interval [t, th] — interval of planning (prediction).



Let x̂(t + T | t) denotes a predicted game state. The
corresponding value of measure (5)

γ̂ = ||x̂(t+ T | t)|| (6)

we call a predicted blunder.
• The efficiency of both players’ chosen control strategies

is measured by the value of a predicted blunder (6).
• Player P on every step knows the current state x(t) and,

using the given prognostic model, develops a new pursuit
plan (control strategy) in the form of a strict program.

• During the game process every player chooses a strategy
that is always oriented towards the best possible future
choice of its opponent. Hence, the players stick to the
principle of guaranteed result (by Ju. B. Germeier) of
predicted blunder. For instance, player P chooses the
best possible strategy under condition that player E
simultaneously chooses the worst one regarding P . This
principle satisfies a more general concept of preservation
state (by N. N. Krasovskii) in the means of measure (6).
The latter guarantees that parameter (6) is not going to
take worse values in subsequent steps.

As a basis for a method solving this pursuit problem we
choose the following terminal prognostic construction. Fix
t ∈ T and x(t). Consider an auxiliary terminal game of
interception:

1) The process of pursuit of players P and E is described
by the following equation

x̂(θ + 1 | t) = Ax̂(θ | t) + û(θ | t) + v̂(θ | t), (7)

where θ ∈ [t, t+T − 1] ⊂ Z+ is the current time, θ = t
is the starting time, θ = t + T is the time instant of
game’s end.

2) Fix the initial game state x̂(t | t) = x(t).
3) The game cost is defined as the distance of the terminal

state x from the origin, using a chosen polyhedral norm:

γ(t) = ||x̂(t+ T | t)||,

and is called a terminal blunder.
4) Players possess only the information of the initial

state x(t).
5) The feasible sets of strategies for both players are limited

to the classes of control programs:

û(·) ∈ U , v̂(·) ∈ V,

where U = UT , V = V T (Decart power of sets U
and V ).

Using (7) multiple times we find

x̂(t+ T | t) = ATx+
t+T−1∑
θ=t

At+T−1−θû(θ | t) +

t+T−1∑
θ=t

At+T−1−θv̂(θ | t). (8)

We will need the following sets

P = ATx+

T−1∑
θ=0

AT−1−θU (9)

Q = −
T−1∑
θ=0

AT−1−θV, (10)

and vectors y ∈ P and z ∈ Q corresponding to control laws
û(·) and v̂(·), such that holds

y = ATx+

t+T−1∑
θ=t

At+T−1−θû(θ | t),

z = −
t+T−1∑
θ=t

At+T−1−θv̂(θ | t).

Then equation (8) can be replaced by

x̂(θ + 1 | t) = y − z.

Therefore, sets (9) and (10) may be interpreted as areas
of reachability for players P and E in the game space X.
Moreover, the game cost formulates as

γ = ||y − z|| = f(y − z).

Reaching the time instant th player P tries to move vector x̂
closer to the origin, and, conversely, player E — as far as
possible from the origin. Theses goals are achieved by the
following strategies:
• Minimax strategy for player P , which has an expected

guaranteed blunder f∗P — the value of a polyhedral
programming problem of minimax type

f∗P = min
y∈P

max
z∈Q

f(y − z); (11)

• Maximin strategy for player E, which has an expected
guaranteed blunder f∗E , with a value

f∗E = max
z∈Q

min
y∈P

f(y − z). (12)

Note that f∗P is always not less than f∗E (f∗P ≥ f∗E).
As a result, the solution of the auxiliary terminal problem

produces optimal control programs for both players û∗[θ; t, x]
and v̂∗[θ; t, x], t ≤ θ ≤ t + T − 1. Now we can go back
to the main problem, which game process is described by
equation (4). For simplicity we choose the side of the Pursuer
P , then E becomes our opponent. From the above assumptions
it follows that player P knows the current game state x(t).
Now he has to solve the proposed auxiliary terminal pursuit
game (model (7)) in order to construct a control program.
Therefore, player P solves a minimax problem of an expected
blunder. The obtained control sequence is used for selecting
control law on the current step. It matches the first element of
the optimal control program û∗[θ; t, x] — i.e. u[t] = û∗[t; t, x].
After reaching the next step in the game player P observes new
game state x(t) and solves a new auxiliary problem. Corrects
his control program and uses only the first element of the new
sequence û∗[θ; t, x] as the current control law, and so on.



The proposed rule of constructing a rational control strategy
for player P we call the principle of a guaranteed predicted
blunder. This concept means that the Pursuer controls its
motion in order to intercept the pursued object, with regard
to uncertainty in the future movement of the latter. Let us
outline the difference of our principle from the famous one
of extreme aiming, also known as the rule of extreme choice
of direction. It was formulated in 1963 by N. N. Krasovskii
and successfully evolved in the game problems of intersecting
motion trajectories [18]. Indeed, the Pursuer would choose a
direction which, from the Pursuer’s point of view, is going
to be the worst future position of the Evader. Both concepts
are of heuristic type. Although, we believe that the proposed
principle of a guaranteed predicted blunder better meets the
logic and practice of pursuit game problems.

We should note, that the increase of the prediction depth
inevitably leads to increase of uncertainty about the planned
control process development and algorithmically complicates
computation of the optimal strategies. That is why one should
choose the prediction depth adequate to the current game
state. In particular, if for some horizon the Evader becomes
reachable for the Pursuer (Q ⊂ P), then further increase of
the depth is unnecessary. Hence, as the distance between the
objects becomes shorter, one should decrease the prediction
depth.

In conclusion, constructing control strategies by both play-
ers using the principle of a guaranteed predicted blunder
leads to solving optimization problems (11) and (12), which
belong to the class of of minimax and maximin polyhedral
programming problems [4].
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