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1INTRODUCTION.
STATEMENT OF PROBLEM

In recent years, important results have been
obtained for the study of the internal structure of the
Moon by the method of seismic tomography (Weber et
al., 2011) and a highly accurate empirical theory of
physical libration of the Moon was built based on
extensive data on its laser observations (Rambaux and
Williams, 2011). These works formed the basis for our
study of the rotation of the Moon. For determination
of the parameters of a ellipsoidal liquid core, we have
used certain ratios of the moments of inertia of a core
and the Moon, obtained in recent papers (Williams
et al., 2010; 2011; 2012) on the basis of laser observa�
tions.

In the paper (Weber et al., 2011), on the basis of
seismic data of the era of lunar Apollo missions to the
Moon and using modern methods of analysis of seis�
mic signals on the Moon (taking into account proper�
ties reflected and the transformed signals from a core),
strong arguments were obtained in favor of the exist�
ence of a solid and a liquid core with a radius of 240 km
and 330 km, respectively. In this article, we use these
results to determine seismographic dynamic parame�
ters of the core and mantle of the Moon in order to
further study the effect of the liquid core of the Moon
on its physical librations.

1 The article was translated by the authors.

In this paper we consider the rotation of the Moon
on the basis of its two�layer model (Ferrandiz and Bar�
kin, 2000; 2003), consisting of a solid mantle and
ellipsoidal liquid core with a perfect fluid, which per�
forms a simple movement according to Poincaré
(Poincaré, 1910; Lamb, 1947). A solid core in this
paper is excluded from consideration.

Orbital motion of the Moon is described by the
high�precision long�term numerical theory of
DE/LE�406, on the base of which were built the
required theory of the rotation of the Moon in the
expansion of spherical functions of the coordinates of
the Moon in the series on multiple Poisson arguments
of the theory of orbital motion   F and D
(Kudryavtsev, 2007; Barkin et al., 2009). As a result,
using the specified auxiliary expansions, expansions of
a second harmonic of the force function of the gravi�
tational potential in the variables of Andoyer–
Poincaré (Barkin et al., 2009) were built. The limited
space in the article doesn’t allow a complete descrip�
tion of the constructed analytical theory of rotation of
the Moon, therefore, here we provide only the
description of the structure of the solution of a prob�
lem of forced and free librations of the Moon, and we
concentrate attention on the determination and inter�
pretation of a new mode of free libration of the Moon
(the corresponding oscillations of the pole of its axis of
rotation), caused by the influence of a liquid ellipsoi�
dal core. As a result of comparison of the analytical
theory of the physical librations of the Moon we con�
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structed, in particular its free librations, and the avail�
able empirical theory of rotation of the Moon, we
determined the amplitude, initial phase, and period of
the fourth mode of a free libration of the Moon. The
main result here is that for the first time, we deter�
mined the period of free nutation of a core
(  days), its amplitude and initial
phase. On the basis of the specified value of the period
is estimated the sum of two meridian compressions of

a core  =  For reasons of similarity
and identity of relations of dynamic oblatenesses for
the whole Moon and its core we have determined their
individual values (Barkin et al., 2012). 

For study of a rotary motion of the two�layer Moon
it is necessary to determine first of all the main
moments of inertia of the Moon (as full system) A, B
and C, and values of the moments of inertia of its core
and, respectively, dynamic compressions of a core.
The specified parameters are the main ones in the
problem and they define the forced and free librations
of the Moon and its core in the gravitational field of
the Earth and other celestial bodies. Estimates of the
specified parameters of a core are executed.

MODEL OF THE MOON, ITS LIQUID CORE 
AND SOLID CORE

Main Parameters and Dynamic Characteristics

In the work (Weber et al., 2011), the shell model of
the Moon (Fig. 1a) was built by seismic methods with
solid and liquid cores with radii about 240 and 330 km.
The existence of a partially molten zone around the
liquid core with a radius of 480 km, or a spherical shell
with radii of 330–480 km (Fig. 1a) were confirmed. The

Π = 77 757.032T

ε + μD D
47.00 10 .−

×

liquid core of the Moon (or liquid spherical shell with
radii of 240–330 km) takes about ~60% of the volume
of a core and makes the greatest contribution to the
value of the polar moment of inertia of the core. Here
we use the results of this work to determine the
dynamic parameters of the core and mantle of the
Moon to further investigate the effect of the liquid core
of the Moon on physical librations.

Masses and moments of inertia of the Moon shells.
In this model, the mean values of the density of the liq�
uid core and solid core (or their homogeneous models)
are:  g/cm3 and  g/cm3 (see
Fig. 1b). Thus, the excess density of a solid core in
comparison with density of a liquid core is

 g/cm3. In the future, we neglect the errors
in determining the average density. For values of an
average radius of a solid core and a liquid core we have
the following estimates:  =  km, =

 km (Weber et al., 2011).

We emphasize that the model of a homogeneous
solid core and its liquid shell are in good agreement
with data of seismic observations (Fig. 1b). Therefore,
a number of dynamic characteristics of the core (the
polar moments of inertia, dynamic compressions,
etc.), we construct, based on the corresponding
homogeneous models in the form of homogeneous
spheres or ellipsoids, using additional observational
data, such as lunar laser ranging (Williams et al., 2011;
2012). We present the results of calculating the axial
moment of inertia of the solid core, considered as a
homogeneous sphere, and the liquid core as a homo�
geneous spherical layer.
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Fig. 1. The main shells of the Moon (a), their radii and graph of density  (b) (Weber et al., (2011).ρ
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For the solid core of the Moon, considered as a
homogeneous spherical body with a radius =

 km, values of mass and polar moment of iner�
tia are calculated by the formulas

(1)

and according to our estimates are

(2)

Similarly, we determine the mass and moment of iner�
tia of the liquid core, also considered as a spherical
homogeneous layer of liquid, by formulas:

 g, (3)

(4)

The result is that the total mass and the polar moment
of inertia of the entire core including a liquid core and
a solid core, will equal:

 kg, (5)

 g cm2. (6)

It is important to note that value of the moment of
inertia of a liquid core (4) makes about 71.3% of the
moment of inertia of the entire core (6) (together with
a solid core). It means that in the dynamics of a rotary
motion of the Moon, the prevailing role is played by
the liquid core. To a certain degree it justifies our
choice of a two�layer model of the Moon for early
studies of the dynamic role of a liquid core. However,
in the subsequent works, we plan to consider features
of dynamics of a three�layer model of the Moon con�
sisting of a mantle, a liquid core and a solid core. Thus,
for the considered model of a core its mass (5) is deter�
mined with a relative error of 17.2%, and the polar
moment of inertia (6) is determined with a relative
error of 27.8%. The average density of the homoge�
neous liquid core (spherical shell) is 6.233 g/cm3.
Thus, the mass and the polar moment of inertia of a
core for two�layer and three�layer models of the Moon
(Weber et al., 2011) coincide.

Dynamic parameter of influence of the liquid core to
rotation of the Moon. To study the effects in the libra�
tion of the Moon, caused by a liquid core, an impor�
tant role is played by the parameter Lc equal to the
relation of axial polar moments of a core Cc and the whole
Moon C. We will assume the known value of the moment

of inertia of the Moon  g cm2 (Araki
et al., 2009). As a result, using the obtained value of the
moment of inertia of the core (6) we obtain the value
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(7)

Actually this estimate of a fundamental parameter of
the Moon Lc derived on the basis of data from seismic
studies of the Moon.

Parameter Lc is determined here most precisely in
comparison with the previous estimates. Nevertheless,
errors in determination of the dynamic parameter Lc
are quite considerable. Therefore, in early studies of
effects in rotation of the Moon, caused by a liquid
core, we will be limited to consideration of a two�layer
model.

Dynamic compressions of a core. In a rotary motion
of the Moon we will study dynamic effects of a liquid
core on the basis of Poincaré’s model for a solid body
with the ellipsoidal cavity filled with ideal liquid, on
the basis of special forms of the equations of motion in
variables of Andoyer and Poincaré, introduced in the
previous works (Ferrandiz and Barkin, 2000; 2003).
The ellipsoidal parameter of a liquid core is a predom�
inating factor for studying the effects of a free nutation
of the Moon due to the hydrodynamic influence of the
liquid core. It can be characterized by semiaxes of an
ellipsoidal cavity in which the liquid core is located,

  and  The axial moments of inertia   
and parameters of inertia of Poincaré    are
determined by formulas (Poincaré, 1910):

(8)

where mc is the mass of the liquid core. We denote the
coordinate axes so that for the moments of inertia and
the semiaxes of the ellipsoidal core the following rela�
tions hold ,  and introduce
the dynamic compressions of a ellipsoidal core:

and  (9)

Seismographic methods currently do not allow us
to identify and evaluate the geometric compression of
a core and values of the semiaxes of the ellipsoidal cav�
ity. However, research on the physical librations of the
Moon based on perennial laser observations allow us
to make it.

Estimates of dynamic compressions of the core
based on the data of laser observations. One of the first

estimates of the parameter  =  was
obtained for a simple model of a homogeneous iron
core with a radius of about 340 km and the compres�
sion of the core (axisymmetric model) was rated as

 In this paper, we obtained the concordant
assessments of dynamic compressions of the core,
including assessments on the basis of comparison of
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the developed analytical theory and the empirical the�
ory based on laser observations (Rambaux and Will�
iams, 2011).

In recent works (Williams et al., 2011; 2012), the
first attempts to determine the dynamic compressions
of a core from the results of the dynamic analysis of
rotation of the Moon based on high�precision laser
observations were made. In work (Williams et al.,
2011), a similar assessment was obtained for the fol�
lowing combination entered in our work of the param�
eters of a core

 (10)

Below we obtained an estimate for the sum of dynamic
compressions of the core of the Moon by comparing
our analytical theory of lunar physical librations (with
liquid core) and the empirical theory of physical libra�
tions, constructed on the basis of perennial laser
observations in a recent paper (Rambaux and Will�
iams, 2011). On the basis of this value (  =

), obtained as a result of the analysis of
librations of the Moon, from a ratio (10) we find an
assessment for parameter

 (error of 34.9%). (11)

In other work (Williams et al., 2012) another value
of the ratio is given

 (12)

In this work, as a result of study of the free librations of
the Moon, on the basis of a known ratio between
compressions and Poincaré’s period of free nuta�
tion of a core (29), we have obtained an assessment

 =  for the sum of dynamic compres�
sions of the core, to which the corresponding value of
the parameter

 (error of 44%). (13)

This value close to the value of this parameter (7)
obtained above (by seismographic data), but with a lit�
tle smaller error.

STRUCTURE OF THE SOLUTION OF THE 
PROBLEM OF THE PHYSICAL LIBRATIONS 

OF THE MOON AND MODES 
OF FREE LIBRATIONS

Space doesn’t allow us to give a full statement of the
work on the creation of the analytical theory of a rotary
motion of the Moon with an ellipsoidal liquid core.
Therefore, here we will concentrate attention on the
analysis of free (resonant) libration of the Moon
caused by a gravitational attraction of Earth and the
hydrodynamic influence of a liquid core. Neverthe�
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less, we will point to the previous general structure of
the solution of a problem we solved concerning physi�
cal librations of the Moon:

(14)

In (14) we used the vector notation of several groups of
variables used in the theory of rotation of the Moon.
Among them, Andoyer variables, describing the rota�
tional motions of the mantle and the core of the Moon
(Ferrandiz and Barkin, 2000; Barkin et al., 2012):

 (15)

Also classical variables of theories of physical libra�
tions of the Moon (Rambaux, Williams, 2011) are used:

(16)

and some other dynamic characteristics. In (16) τ, ρ
and σ are librations in the longitude and an inclina�
tion, I is an average angle of inclination of the axis of
rotation of the Moon relative to the normal to the
plane of the ecliptic. In (14), arguments of the theory
of orbital motion of the Moon are also listed:

 are the linear functions of time with certain
frequencies. The geometric and dynamic sense of all
the above variables is well known (Ferrandiz and Bar�
kin, 2000; Gusev and Petrova, 2008; Barkin, et al.,
2012).

Basic equations of rotational motion of the Moon
with a liquid ellipsoidal core written in canonical form
(Andoyer variables) and special methods developed
for them of construction of quasi�periodic solutions of
Hamiltonian systems under resonance conditions,
study their linear neighborhood, and in the general
case also the nonlinear neighborhood. These research
methods were developed originally for the solid model
of the Moon without the liquid core (Barkin, 1987;
1989), and in this paper they develop a more general
model of a celestial body with an ellipsoidal liquid
core. The method of small parameters which is intro�
duced on the basis of the assumption of a small value
of dynamic compression of the Moon, or on the basis
of the assumption of an almost concentric distribution
of its density is thus used. Generalization of the
method relates primarily to the study of the perturbed
motion of the poles of the Moon and the axes of rota�
tion of the liquid core. At the first stage of construction
of the theory, as in the case of a solid Moon, the main
regularities in its rotation are studied. It is shown that
the results for the solid model and the model of the
Moon with the liquid core in respect of the librations
of the Moon’s mantle, are the same. However, new
provisions on the nature of the unperturbed motion of
the core under the Cassini laws of motion of the Moon
were added (Ferrandiz and Barkin, 2003).
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The first three terms of the solution (14) describe
the intermediate conditionally periodic solution of the
problem

(17)

and they do not actually contain the initial conditions
of the problem. Here the solution is constructed pri�
marily in Andoyer variables in integer powers of a
small parameter μ, which characterizes the order of
smallness of the dynamic compressions of the Moon,
its core and mobility of Moon’s orbital plane.

In (17)  is the basic solution, describing the rota�
tional motion by the Cassini laws. It is determined as
the involvement of members of the first order with
respect to dynamic compressions, corresponding to
the second harmonic of the force function of the New�
tonian interaction of the nonspherical Moon and the
Earth. As a result we received dynamic study all the
provisions of the laws of Cassini and formulated more
complete and accurate positions, supplementing them
(Barkin, 1987; 2011). The main result here is a theo�
retical determination of the constant angle of Cassini

 an unperturbed value of the angle between the
normal to the plane of the ecliptic and the axis of rota�
tion of the Moon (in motion by Cassini). Value of 
determined from the trigonometric equation (Barkin,
1987; Barkin et al., 2009):

(18)

whose coefficients (and, of course, the value of the
angle ) depend on the main parameters of selenopo�
tential   and parameters of the perturbed orbital
motion of the Moon (in particular on the rate of pre�
cession of the lunar orbit ). Here we omit the
detailed recording and analysis of the equation (18).
But note that this equation is a necessary condition for
the existence of quasi�periodic solutions (17), which
describe the forced librations of the Moon.

Based on the parameters of a modern model of the
gravitational field of the Moon, built as a result of the
Japanese space mission Selena I (Matsumoto et al.,
2010), based on equation (16) the value

 =  (Barkin et al., 2012) is
found. This theoretical value agrees well with the
related value of the angle of Cassini 
obtained in the empirical theory from a long series of
the Moon laser observations (Rambaux and Williams,
2011).

The motion of the Moon with the liquid core
according to the laws of Cassini is determined by the
conditions of existence of quasi�periodic solutions of
the equations of motion of the Moon (from the equa�
tions of the first approximation for the canonical vari�
ables Andoyer–Poincaré) (Barkin et al., 2012). In the
unperturbed motion the Moon with the liquid core
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makes axial solid�body rotation with constant angular
velocity  representing the frequency of the argu�
ment of the orbital motion of the Moon F.

More difficult is the problem of constructing ana�
lytic expressions for the constant components of vari�
ables  conditionally—periodic solutions  (17).
These permanent additions to the generating values of
variables  according to the method of developing,
determined by analyzing the equations of the second
and higher�order approximations, which are sequen�
tially addressed in the construction of conditionally
periodic solutions, in which  its purely
conditionally�periodic component. Perturbations

 is the sum of trigonometric terms with
arguments that are linear combinations of the classical
arguments of the theory of orbital motion of the
Moon. This important part of constructing a theory of
the Moon’s rotation, we plan to devote a separate arti�
cle with the results of the identification and tabulation
of the amplitudes, periods and initial phases of forced
physical librations in Andoyer variables, variables in
the classical theory of the physical librations of the
Moon, as well as for the components of the angular
velocity of rotation of the Moon.

In this paper, we focus on the fourth term of the
solution (14)

(19)

which describes free and resonant librations of the
Moon. Here, —constant amplitudes and

—arguments of free librations Moon
which are linear functions of time:

 (20)

with these constant frequencies    and  

  and —initial values of the arguments—
arguments phase (for the epoch 2000.0).

Thus, the solution of the problem of the physical
librations of the Moon (14)–(20) (for the considered
two�layer model of the Poincaré) contains 8 initial
conditions. They represent the amplitude and phase of

the free libration in longitude ( ), in inclination

( ), in motion of poles ( ) and in a free nuta�

tion of a core ( ). The first 6 of the initial condi�
tions of the problem of the physical libration of the
Moon have been identified on the basis of the lunar
laser ranging, for the first time in the work of Calame
(1976). More precisely, these six initial conditions
were identified in the current study (Rambaux and
Williams, 2011). Despite the fact that this study was
determined from observations of a number of new
librations with certain periods, but of unknown origin,
the authors were unable to determine the parameters

of the fourth mode of the free libration ( ). Such

,Fn

Z pZ

0,Z

( , , , ,...)l l F DZ� M S

( , , , ,...)l l F DZ� M S

res M S( , , , , , , , , , , , ,..., ),p q r sP Q R S U U U U l l F D tZ

, , ,P Q R S
, , ,p q rU U U U s

= + = + = +

= +

(0) (0) (0)

(0)

, , ,

,

p p p q q q r r r

s s s

U n t U U n t U U n t U

U n t U

,pn ,qn rn .sn (0),pU
(0),qU (0)

rU (0)
sU

(0), pP U
(0), rR U (0), qQ U

(0), sS U

(0), sS U



408

SOLAR SYSTEM RESEARCH  Vol. 48  No. 6  2014

BARKIN et al.

unidentified librations the theory (Rambaux and Will�
iams, 2011) contains about fifty to five classical vari�
ables  (16). In this paper, we first
identify the fourth mode of the free librations of the
Moon in the solution (14)–(20) and give a first evalu�
ation of its period, amplitude and initial phase.

Due to the resonant nature of the Moon’s motion,
analytical solution of the variational equations (19)

 we searched
for integer and fractional powers of a small parameter (in

powers ). Such a method for solving the variational
equations was previously applied in the theory of rota�
tion of a solid non�spherical Moon without the liquid
core (Barkin, 1987), and later in the study of the
Moon’s rotation with a liquid core (Ferrandiz and
Barkin, 2003; Barkin et al., 2012). A detailed descrip�
tion of the analytical solutions (14)–(20) will be given
in our subsequent work. Here we will focus on describ�
ing the effects of the free movement of the pole axis of
rotation of the Moon, due to its ellipsoidal liquid core.

FREE LIBRATIONS OF THE MOON

Free librations of the Moon appear in all variables
Z (14) briefly described above, in particular in the vari�
ables Andoyer. According to our solution, they repre�
sent the solution of equations in variations, describing
the rotation of the Moon in neighborhood of its inter�
mediate conditionally�periodic solution. We point out
the structure of this solution in the canonical variables
of Andoyer (Barkin et al., 2012):

(21)

Here,  —the vector of the
canonical variables of Andoyer describing the rota�
tional motion of the Moon. The basis of the analytical
studies is special canonical equations of rotational
motion of a rigid body (mantle) with ellipsoidal cavity
filled with an ideal fluid, doing simple motion on
Poincaré (Ferrandiz and Barkin, 2000). As well as
methods for constructing quasi�periodic solutions of
Hamiltonian systems containing a small parameter,
and methods of analysis of its linear and nonlinear
neighborhoods (Barkin, 1987; Barkin and Ferrandiz,
2003; Barkin et al., 2012).

In solving (21) —amplitudes of the free
librations. Arguments    and  are deter�

mined by the formulas (20), where   

—initial values of the arguments of free libra�
tions (at epoch 2000.0). Frequencies of the free libra�
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tions of the Moon p, q, r and s are determined by solv�
ing of the corresponding characteristic equation. They
are purely imaginary:

(22)

where    and —the real frequency of free
oscillations, which correspond to periods of oscillations

(23)

These frequencies and the corresponding periods lend
themselves to precise analytical description and their
ratings are not required observations of librations of
the Moon, but it requires the exact values of the
parameters of the dynamic structure, its gravitational
field and the characteristics of the ellipsoidal core.
And on the contrary, values of amplitudes of free libra�

tions P, Q, R, S and their initial phases   

 can only be determined on the basis of the data of
observations of the rotational motion of the Moon. Up
to the present time, from these four modes according
to laser observations were determined only the first
three. The very first determination of the amplitudes
and phases of the free librations of the Moon by laser
measurements of distances to the reflectors mounted
on the surface of the Moon was made in the work of
Calame (1976). Modern high�precision determina�
tion of the amplitudes and phases of three modes of
free librations of the Moon was made in a recent paper
(Rambaux and Williams, 2011). The authors used a
long series of laser observations of the Moon (for a
period of about 40 years).

In this paper, we omit the detailed derivation of the
formulas for the frequency and period of free librations
of the Moon (all four modes) and the formulas for the
solution of variational equations in Andoyer’s vari�
ables, and the final results for subsequent analysis and
the transition to the variations of the classic variables
of the theory of physical librations of the Moon Z =

 (16). The most important issue here is
the question of the determination of the fourth mode
of the free librations of the Moon caused by the liquid
core on the base of empirical data (Rambaux and Wil�
liams, 2011).

The main resonance effects in the rotational motion
of the Moon and their interpretation. In this paper, we
study the fundamental resonance effects in the rota�
tional motion of the Moon in a neighborhood of a
intermediate conditionally�periodic motion (17). The
Moon has a core with a small size (figure). Because of
this feature the general characteristic equation in vari�
ations in a first approach is split into two equations.
The first equation defines three modes of free libra�
tions in longitude, in inclination and free oscillations
of the pole with frequencies    This equation we
studied in the theory of physical librations of the solid
Moon model. In particular we have been evaluated
three periods of free librations of the Moon, corre�

= ± = ± = ± = ±0 0 0 0, , , ,p ip q iq r ir s is

0,p 0,q 0r 0s

π π π π
= = = =

0 0 0 0

2 2 2 2, , , .p q r sT T T T
p q r s

(0),pU (0),qU (0),rU
(0)
sU

1 2( , , , , )P P Iτ ρ σ

0,p 0,q 0.r



SOLAR SYSTEM RESEARCH  Vol. 48  No. 6  2014

EFFECTS OF A PHYSICAL LIBRATIONS OF THE MOON CAUSED BY A LIQUID CORE 409

sponding to these frequencies (Barkin, 1987; Barkin
et al., 2012). The second characteristic equation
allows to determine the frequency of the fourth mode
of free oscillations of the pole of the Moon, caused by
a liquid ellipsoidal core of the Moon. In case of a small
core for this frequency we received analytical expres�
sion in terms of key parameters of considered model of
the Moon:

 (24)

Saving in expressions (24) only the terms of the first
degree of smallness relative to dynamic compressions
of the core (9), for the frequency (24), we obtain a
known simplified expression

(25)

Corresponding to the frequencies    and (25)
periods (23) are determined by the following formulas:

 (26)

(27)

 (28)

(29)

In formulas (26)–(29)  draconic period of the
lunar orbital motion  =  days.

Here, the frequency  (f is the gravita�
tional constant,  is the mass of the Earth, a is an
average semi�major axis of the lunar orbit, accepted in
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our theory by the equal a = 383397772.5 m). The
numerical values of these frequencies are

(30)

For the assumed values of the dynamic compres�
sions of the Moon according to the formula (29) we
obtain the following theoretical value of the period of
free libration, due to the influence of the liquid core

Ts = 27.1976 days. Dimensionless coefficients 

 …,  in the formulas (26)–(28) are the nor�
malized values of the respective second partial deriva�
tives of the averaged perturbing Hamiltonian of the
problem  They are defined rather cumbersome
formulas were first computed in (Barkin, 1987) for a
model of the gravitational field of those times (Gusev
and Petrova, 2008). In this paper, for these coefficients
were obtained by the numerical values:

 (31)

but already for modern model of a gravitational field of
the Moon constructed by authors of work (Matsumoto
et al., 2010).

Now, according to the formulas (26)–(31) for the
accepted values of the parameters of the model we find
the values of the four periods of free librations of the
Moon with liquid ellipsoidal core. They are shown in
Table 1 in comparison with the corresponding periods
of the empirical (laser) theory of the librations of the
Moon (Rambaux and Williams, 2011).

To determine the amplitudes P, Q, R, S and initial

phases     of free librations we will use
the empirical theory of physical librations of the Moon
(Rambaux and Williams, 2011). For this purpose we
will identify designations of the main arguments of
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Table 1. Four modes of free librations of the Moon

Amplitudes Arguments Periods, days Phases, 
deg Modes

1057.13 Free libration in longitude with period 2.99 yr

27257.27 Free oscillations of the pole with period 74.3 yr

8822.88 Free oscillations of the angular momentum vector in 
space with a period 24.3 yr

27.312 Quasi�diurnal variation of the pole of the Moon with 
the period 27.312 days

1 735P = ′′

(0)( )p pU t pt U= +

(0) 207.01pU = °

3 3072Q = ′′

(0)( ) qqU t qt U= +

(0) 161.60qU = °

1 1881R = ′′
(0)( ) rrU t rt U= +

(0) 160.81rU = °

0 0160S = ′′

(0)( ) ssU t st U= +

(0) 39sU = °
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Table 2. Free and resonant librations of the Moon. Amplitudes, periods and trigonometric arguments, variations of the cor�
responding classical variables

 Variables Theory analytical Theory empirical Trigonometric terms Periods, days

1 –3″3060 –3″306 27257.273

2 –0″0320 –0″032 27.296

3 0″0250 0″025 27.932

4 0″0222 – 26.529

5 –0″00004 – 27.129

6 –0″001 0″000 27.312

7 –0″016 –0″016 27.312

8 8″1830 8″183 27257.273

9 0″0320 0″032 27.296

10 –0″0250 –0″025 27.932

11 0″0222 0″022 26.529

12 –0″00004 – 27.129

13 –0″016 –0″016 27.312

14 0″001 0″002 27.312

15 1″7570 1″735 1056.210

16 0″0774 0″077 27.185

17 –0″0328 –0″032 27.239

18 –0″0014 – 8822.883

19 –0″001 – 7449.890

20 5″7402 5″753 27.185

21 2″4330 2″437 27.239

22 0″0320 0″029  8822.883

23 –0″0026 –0″003 1056.210

24 –0″007 –0″013 7449.890

25 0″049 0″052 7449.89

26 5″7402 5″758 27.185

27 –2″4330 –2″443 27.239

28 –0″0320 0″033 8822.883

29 –0″049 –0″045 7449.890

30 –0″007 –0″002 7449.890

N

1Pδ sin W

1Pδ ( )sin V F−

1Pδ ( )sin U F−

1Pδ ( )sin U F+

1Pδ ( )sin V F+

1Pδ cos Θ

1Pδ sin Θ

2Pδ cos W

2Pδ ( )cos V F−

2Pδ ( )cos U F−

2Pδ ( )cos U F+

2Pδ ( )cos V F+

2Pδ cos Θ

2Pδ sin Θ

Kδτ sin U

Kδτ sin( )W F+

Kδτ ( )sin W F−

Kδτ sin V

Kδτ cos Ξ

Kδρ ( )cos W F+

Kδρ ( )cos W F−

Kδρ cos V

Kδρ cosU

Kδρ cos Ξ

Kδρ sin Ξ

KIδσ ( )sin W F+
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KIδσ cos Ξ

KIδσ sin Ξ
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free librations from this work U, V and W with our des�
ignations:

  (32)

The same ratios are obtained for the initial phases of
these argument:

In this study, we determined the initial values of all

phases:    and  They are listed in
Table 1. And also identified four values of the
amplitudes of the main free librations (see below),
frequencies (and the periods) of free oscillations.

For convenience of comparison of free librations
(amplitudes, phases and the periods) in analytical and
empirical theories in our solution in Andoyer’s vari�
ables we will write down free librations in the form of
(21), using for resonant arguments of their expression (32)
through arguments U, V and W, used in theory based
on laser observations.

As a result of the solution of the equations in varia�
tions by means of a method of small parameter we
constructed the approximate solution of the problem
of free librations in Andoyer’s variables. Note that in
the considered formulation of the problem of a rota�
tion of the core model of the Moon mapped to a sim�
ple motion of an ideal liquid according to Poincaré
(Lamb, 1947). The problem of the physical librations
of the Moon was reduced to the solution of the canon�
ical system of equations of the 8th order.

In this work, at the beginning the solution of the
equations in variations was obtained in Andoyer’s vari�
ables   and then was converted
to the known classical variables 
(Rambaux and Williams, 2011). Also Andoyer’s
angular variables were used θ and ρ, for which

  and similar variables for
motion of a liquid core:  and  for which

 Quite capacious calculations for the
specified constructions we will lower for brevity state�
ments and we will give final results on studying of free
librations of the Moon, including determination of
entry conditions of a task on the basis of their compar�
ison with the empirical theory (Rambaux and Will�
iams, 2011), constructed on the basis of laser observa�
tions. So for variations  = 

 the solution of the variational equa�
tions in the vicinity of motion by Cassini’s laws is
represented in the following compact form:

(33)
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where  is a variation of the modulus of the
angular velocity vector. In (33) we used a new notation
for the amplitudes of the free librations described in
Andoyer’s variables:

(34)

For the amplitudes (34) were obtained analytical
expressions, depending on the parameters of the
model of the Moon and its perturbed orbital motion.
These amplitudes are proportional to the amplitude of
the free librations of the Moon: P, Q, R and S of all
considered four modes of the librations. To carry out a
comparison of our theory with the empirical theory
(Rambaux and Williams, 2011) (to determine the ini�
tial conditions of the problem) it is necessary to trans�
form the solution in Andoyer’s variables (33), (34) to
classical variables of the theory of a physical librations
of the Moon (16).

Free librations in classical variables of the theory of
rotation of the Moon. If the solution of a problem is
constructed in Andoyer’s variables, similar expres�
sions can be obtained in classical variables of the the�
ory of physical librations and for components of the
angular velocity (of the Moon and its core). Indeed,
between classical variables of the theory of physical
librations and Andoyer’s variables there are simple
geometrical relations which directly follow from
expressions of direction cosines of the principal axes of
inertia of the Moon in the principal ecliptic reference
system (Barkin, 1987).

At the first stage in our theory, Andoyer’s variables
were used and then the solution of the variational
equations was constructed in classical variables (16).
In the linear approximation these geometrical rela�
tions in particular allow us to express variations of
classical variables  through the cor�
responding variations of Andoyer variables   

G Bδω = δ

Λ Γ
c c( ) ( ), , , ,, , , ; ;, .s s ssL Q H Q TET T M N

1 2( , , , , )P P I= τ ρ σZ
,lδ ,δθ ,gδ

Table 3. Unexplained librations with significant amplitudes
(in classical variables of the theory of physical librations of
the Moon)

Variables Status Periods, days C, arcsec S, arcsec

 +Un 7481.531 –0.045 –0.002

 +Un 7468.388 –0.013 0.052

 +Un 27.312 0.000 –0.016

+Un 27.312 –0.016 0.002

KIσ

Kρ

K
1P

K
2P
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 and  (in a vicinity of motion of the Moon
according to Cassini) (Barkin, 1987):

 (35)

Here, the index K (or K) is also attributed to classical
variables. Substituting the solution for free librations
in Andoyer’s variables (33), (34) in formulas (35), we
will obtain variations for 5 classical variables:

(36)

 

We recall that constant values of amplitudes of the free
librations of the Moon (for all four modes of oscilla�
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tions) P, Q, R and S appear as a factors in the expres�
sion of the amplitudes of free librations in formulas (36).
Arguments U, V, W and  are the resonant arguments
of free librations of the Moon. For the first three of
them we will accept the same notation, as in the
empirical theory (Rambaux and Williams, 2011) (see
Table 1).

We will determine constant amplitudes and initial
phases of arguments from a comparison of the analyt�
ical solution of a problem of free librations of the
Moon (36) and tables of librations (free and in the
same variables) for the empirical theory (Rambaux
and Williams, 2011). As a result of the realization of
this procedure, we determine amplitudes and initial
phases of the first three modes of free librations of the
Moon (in longitude, in an inclination and in pole
oscillations). These values are given in Table 1 (in arc�
seconds):    

Taking into account representations (24)–(30) in
formulas (23) in particular we obtain the correspond�
ing values of frequencies (1 unit = degree/day):

(37)

Thus, at this stage we have identified the main free
libration of the Moon which appears in variations of
classical variables. The Julian date here is taken as an
initial time point t0 = 2451545.0, as in the work (Ram�
baux and Williams, 2011).

If the terms of the free librations of the Moon for
the first three modes are quite clearly discernible in the
empirical theory, then with the identification of the
fourth mode of the free libration of the Moon, due to
the influence of the liquid core, the situation is much
more complicated.

As a result of comparison of amplitudes of libra�
tions in the solution (36) with their values obtained in
the empirical theory, first we calculate values of con�
stant factors

 (38)

and, respectively, we find the initial values of the
amplitudes of free librations of the first three modes
(listed in Table 1). With values (38) and formulas (36)
we find amplitudes of 30 terms of free librations of the
Moon. They are listed in the Table 2 in comparison
with similar amplitudes of the theory (Rambaux and
Williams, 2011). Table 2 shows a good agreement with
the analytical theory developed here (Barkin, 1987;
Barkin et al., 2012) and the empirical theory con�
structed on laser observations (Rambaux and Will�
iams, 2011).

In Table 2 we used auxiliary arguments

(39)

These arguments are used for the description of free
librations of the Moon caused by the influence of an
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ellipsoidal liquid core (in Table 2 these librations are
specified in lines with numbers 6, 7; 13, 14; 19; 24, 25;
29, 30).

Values of amplitudes and the periods are given in
this table for 30 free variations of the main variables of
the theory of librations of the Moon according to for�
mulas of the constructed solution (36) in comparison
with similar characteristics of the empirical theory of
the rotation of the Moon (Rambaux and Williams,
2011). Here, amplitudes and the periods of free libra�
tions for projections of angular velocity vector of rota�
tion of the Moon to its principal axes of inertia are
specified. Our solution of a problem of free librations
of the Moon along with classical members contains
some additional members, which as shown by the
numerical estimates given in Tables 3 and 4, are quite
significant and have to be considered in light of laser
ranging observations.

DETERMINATION OF THE FOURTH 
MODE OF FREE LIBRATIONS. 
DUE TO THE LIQUID CORE

The periods and amplitudes of modes of free libra�
tions which were determined are given in Table 1. The
DE421 model of integration included a liquid core
with the flattened core–mantle boundary. It adds the
fourth mode of a possible free mode which may be
called a retrograde precession of a pole in space, usu�
ally called a free nutation of a core by analogy with the
Earth’s rotation. This mode will mainly influence the
liquid core, but there will also be a small reaction to
the mantle librations.

According to the DE421 theory, flattening at the
core boundary causes a spatial oscillation of the Moon
with a period of about 197 years. The period of a free

nutation of the core depends on the orbital period and
core flattening. This period expressed in days is esti�
mated by a formula (Rambaux and Williams, 2011):

 

where fc is a flattening on the DE421 model equal to

 In expressions of classical variables in the
theory of librations of the Moon, according to the the�
ory of DE421, the  and  integration has to show
that the period of progressive motion is about
7500 days. The libratory term with the period of
7367 days was identified with the forced librations pre�
dicted by Eckhart (Rambaux and Williams, 2011).

Two trigonometrical terms of a free nutation of a
core with the period in 7481 days for variable  and
with a period of 7468 days, for a variable  with
amplitudes of 0.045 and 0.054 angular seconds,
respectively, are candidates. Equivalent terms in vari�
ables  and  are terms with periods 27.312 days and
with an amplitude of 0.016 arcsec.

Thus, the amplitudes in the two representations are
different from each other.

Authors (Rambaux and Williams, 2011) showed as
a result of careful analysis that terms that candidates
for a role of free librations from a core with the periods
of 7481 and 7468 days strongly (0.95) correlate with
above�mentioned variations with a period of
7367 days. So the beat period between these periods is
about 1000 years, which corresponds to the period
covered by an ephemeris. Thus, it is thus noted that
amplitudes of members of candidates for a role of
members of free nutation in variables  and ρ,
apparently, are considerably overestimated because of
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Table 4. The main librations of the Moon caused by a liquid ellipsoidal core

Variables method  Period, days Amplitude , 
arcsec

Amplitude ,
arcsec

 observations Un 27.312 0.000 –0.016

 theory  27.312 –0.001 –0.016

 observations Un 27.312 –0.016 0.002

 theory  27.312 –0.016 0.001

 observations Un 7468.39 –0.013 0.052

 theory  7449.89 –0.007 0.049

 observations Un 7481.53 –0.045 –0.002

 theory  7449.89 –0.049 –0.007

 observations Un – – –

 theory  7449.89 –0.001 –
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strong correlation, and the amplitude of similar mem�
bers in two other variables  and  look more realis�
tic. These numerical results are applicable to the
DE421 theory, but real values of flattening, amplitude
and the period of a free libration of the Moon, accord�
ing to authors, are very uncertain. The authors didn’t
manage to identify completely the free libration of the
Moon caused by the influence of a liquid core, the
period, phase, and also structure of the arguments of
free librations. Therefore here we continue research of
effects of a liquid core of the Moon in its free libra�
tions.

Determination of the fourth mode of free libration of
the Moon due to its liquid core. In this work, the
approximate solution of a problem of free oscillations
of a pole of a vector of angular velocity of rotation of
the Moon and a pole of angular velocity of rotation of
a liquid core (Poincaré’s coordinate system given by a
simple motion of the liquid) in relation to the principal
axes of inertia was actually obtained. The solution was
obtained in variations of Andoyer variables L, Lc and l, lc
(Ferrandiz and Barkin, 2000; Barkin et al., 2012).
Here, L, Lc are projections of a vector of the angular
momentum of the Moon G and the vector of the angu�
lar momentum of the relative motion of particles of the
liquid  on a polar axis of inertia of the Moon 

  Correspondingly, G and Gc

are moduli of the specified vectors G and Gc, θ and θc

are angles, formed by vectors G and Gc with the polar
axis of inertia of the Moon 

The fourth mode of the free librations of the Moon
is due to the hydrodynamic effect of the liquid core,
and these canonical variables Andoyer determined by
simple formulas. They follow from (17):

(40)

where the frequency s expressed in terms of a combi�
nation of all the moments of inertia of the Moon and
its core (24) or by the simplified formula (25) through
the dynamic compressions of the liquid core  
(Barkin et al., 2012):

(41)

Frequency  which is equal to the frequency of
the corresponding argument of the theory of orbital
motion of the Moon F, is equal to the unperturbed
value of the angular velocity of rotation of the Moon,
(one of the provisions of Cassini’s laws). To this fre�
quency there corresponds the draconic period of lunar
orbital motion TF = 2π/nF = 27.21222 days. The free
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to the frequency of a free libration s0. This period is not
much shorter than the draconic period stated above.

For frequency s0, we will use also the representation

(42)

where frequency  is a very low frequency of
Poincaré, defining a long�periodic libration of the
polar axis of rotation of the Moon due to the influence
of the liquid core with a period 

Now we write the solution (40), (41) for the varia�
tions of the variables:    intro�
duced above, the variables defining oscillations of a
pole of the Moon and its liquid core. This solution was
constructed according to the method of the small
parameter (Barkin, 1987) and describes the main
dynamic effects in the rotation of the Moon caused by
a liquid core (Barkin et al., 2012):

(43)

(44)

As true differential relations: 
 the formulas for solving variational

equations (43), (44) can be extended:

(45)

(46)

Coefficients    and  in (45), (46) are
expressed in terms of values of the second partial
derivatives of a Hamiltonian of the problem of rotation
of a two�layer Moon, the variables calculated at unper�
turbed values corresponding to motion according to
Cassini’s laws,

 (47)

where auxiliary notation is used

(48)

For the model of a dynamic structure of the Moon
accepted in our work and its core it has the following
values of the moments of inertia (Matsumoto et al.,
2010; Barkin et al., 2012):
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In (49) m and r0 are the mass and the mean radius of
the Moon. From the values of these parameters of the
problem (49), we find the numerical values of the
coefficients (47), (48):

 (50)

Correspondingly, the solution (45) and (46) can be
written as:

(51)

We emphasize that the unperturbed values of the
Andoyer’s variables correspond to the rotation of the
Moon by Cassini’s laws. In our notation, the axes of
inertia of the Moon (in this paper) the moments of
inertia of the Moon and its core satisfy the inequalities

 and  Here, we introduce the
new angular variable  by the formula 
For the initial values of the variables   and their
frequencies, we have expressions:

(52)
The liquid core causes free librations which are

shown in all classical variables. To reveal them it is
necessary to use equalities (35) and formulas of our
solution in Andoyer’s variables (33). For the consid�
ered variations they can be written in the form:

  

(53)

In these equalities it is necessary to substitute free vari�
ations of Andoyer’s variables, caused by a liquid core (45).
As a result, for variations of classical variables of a
problem (53) we obtain the following free librations
due to an ellipsoidal liquid core:

(54)
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Substituting numerical values of parameters

  variations (54) can be
written in the following form:

(55)

The solution of the problem of free librations of the
Moon, caused by hydrodynamic influence of a liquid
core, is obtained here in the system of coordinates
connected with the Moon and with an ellipsoidal cav�
ity of a core (in the system of the principal central axes
of inertia of the Moon). For comparison of this analyt�
ical solution with the empirical theory (Rambaux and
Williams, 2011) we will write down it in the system of
coordinates Oξηζ. For this, it follows that the funda�
mental argument  in formulas (53)–(55) be
replaced with argument  considering a preces�
sion of the plane of a lunar orbit with an average angu�
lar velocity  and with the corresponding
period 

In formulas (55), neglecting terms of order 10–4–
10–5 and setting , we will write down the
solution (53) in the following form:

(56)

The following task is the search for the possible free
librations caused by a liquid ellipsoidal core,in the
tables of the empirical theory of the Moon’s physical
librations (Rambaux and Williams, 2011), and their
identification with the constructed perturbations
(31)–(33).

Period, amplitude and phase of the fourth mode of
the Moon’s free librations caused by a liquid core.
Tables of the empirical theory for classical variables of
the theory of the physical librations of the Moon con�
tain a large number of terms with certain amplitudes
and periods, but whose nature is not certain (remains
unknown). For 5 classical variables in the work of
Rambaux and Williams (2011) there are about 50 sim�
ilar terms. Table 3 of this article lists those that are
characterized by the highest values of the amplitude.
Designation of the status of variations Un in Tables 3
and 4 means that arguments for the corresponding
librations of classical variables are unknown. Hydro�
dynamic influence of a liquid core on the physical
librations of the Moon is one of major factors for the
interpretation of unexplained terms of the empirical
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theory (with the status Un). Therefore, they have to be
analyzed first of all from the point of view of the two�
layer model for free librations with the largest ampli�
tudes from Tables 3 and 4.

Tables 3 and 4 contain designations of classical
variables in the first column for the analysis of the free
librations of the Moon. All librations here have an
unknown origin (status). However, we were able to
determine periods and amplitudes of these librations
on the basis of long�series laser observations (Ram�
baux and Williams, 2011). Values of the periods of
librations are given in days and amplitudes of librations
in seconds of arc. Our purpose is to determine the
period and to determine amplitude and an initial
phase of the fourth mode of a free libration of the

Moon (S and  or  First, we note that
the period of free nutation in the motion of a pole of
the Moon due to the influence of the liquid core in the
empirical theory (Rambaux and Williams, 2011) is
determined in the ecliptic coordinate system 
associated with the equinox of date. Let us compare
our analytical expressions (56) and empirical values of
the amplitudes and periods of the librations of the
Moon, caused by the liquid core (Table 2).

As a result, for the period of Poincaré 
we obtain the values:

 days (by perturbations on the variable
),

 days (by perturbations on the vari�
able ),

 days (their average value).
And now, from the formula for Poincaré’s period of

oscillations of a pole of the Moon (16), the value of the
sum of dynamic meridian compressions of a liquid

core is determined:  =  In the first
section, the close estimate of this parameter was dis�

cussed  = 
According to our analytical theory of rotation of

the Moon, its physical librations are interpreted in the
Cassini system coordinates  which rotates rela�
tive to the coordinate system of the ecliptic  in
accordance with the laws of Cassini. Axis CZ and Cz of
these coordinate systems coincide, but axis CX

= + Π

(0)
0 0sU F Π0).

,CXYZ

2T nΠ Π= π
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×

,Cxyz
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directed toward the equinox date, and axis Cx directed
along the midline of the nodes of the lunar orbit on the
ecliptic plane. This means that the coordinate axis 
(and ) rotates in the ecliptic plane with an angular
velocity  in the main coordinate system, i.e.,
clockwise when viewed from the end of the axis (owing
to regressive shift of middle node of the lunar orbit to
the ecliptic plane). The angular velocity of this motion
is equal to  the period of this
motion is 6798.526 days (Rambaux and Williams,
2011). This means that in a coordinate system 
the period of free libration due to the liquid core will
correspond to the frequency  i.e., it is equal to

 The corresponding argument of a
free libration (the fourth mode) can be presented as

 where  (  is
the initial phase of the input variable). If the frequency
s0 defines a quasi�diurnal (lunar oscillations with the
period close to the value of the draconic period in
27.21222 days), then frequency  defines a
long�period libration with a period of about 206 years.
Based on the analysis of the unidentified librations of
the Moon with the periods from Tables 3 and 4, we
arrive at the conclusion that the observed perturba�
tions of variables  and  correspond to a frequency

 and corresponding period 

We will use designations of additional arguments (39)
and variations of two classical variables  and

 from the solution (56) in the following form:
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Cx
Cy

Ω < 0n

69629 1123,nΩ = − ′′

CXYZ

Ω−0 ,s n
( )Ω= π −02 .sT s n

= + Π,sU F 0n tΠΠ = + Π Π = − +
(0)

0 0 sF U

0 Fn s nΠ = −

1P 2P

Ω−0s n ( )Ω= π −02 .sT s n

δρK

sinρδσK

( )

( )

( )

( )

= − Ω + Π Ξ

− Ω + Π Ξ

Ω + Π Ξ

Ω

δρ

+ Π Ξ

ρδσ =

−

K

K

0 0

0 0

0 0

0 0

sin

si

cos

sin cos ,

sin sin

cos cos .

n

S

S

S

S

Ω + Π

0 0,Ξ + Ω + Π ( ) .n n tΩ ΠΞ = + 0Ω 0Π

Table 5. Determination of an initial phase Π0 and amplitude S of the fourth mode of the free librations of the Moon, caused
by influence of a liquid ellipsoidal core

 ( )0 0 0 0 2c s 5oS Ω + Π = ′′− ( )0 0sin 0 013S Ω +Π = ′′ 1390Π = − ° 0 054S = ′′
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ations according to laser observations we have a similar
representation (Tables 3, 4):

(58)

For frequencies  and  the respective periods
(in accordance with Tables 3, 4) have relatively similar
values equal to 7481.5 and 7468.4 days. The average of
these periods 7475.0 days we identify with a period of
free libration  =  due to the influence
of the ellipsoidal liquid core. Assuming that the small
differences in the values of these periods in the empir�
ical theory (7481.5 and 7468.4 days) are caused by
errors in the calculations, we take the observed value of
the period,

(59)

As a result of comparison of perturbations (57) and
(58) we will obtain a system from four equations (see
Table 5). From the theory of orbital motion of the
Moon we have the initial value of the argument

 (for the initial epoch 2000.0) (Simon
et al., 1994; Kudryavtsev, 2007).

We will consider now variations of two other classi�
cal variables of the theory of physical librations of the

Moon  and  from the solution (56), which are
represented in the form:

(60)

where  On the other hand, for
considered variations according to the empirical the�
ory based on laser observations of the distances to the
light reflectors on the Moon we have a similar repre�
sentation (Rambaux and Williams, 2011) (Table 3):

 (61)

For variations of the long�period variables in 74470.00
and 75797.75 days (from Table 4) we obtain an average
value of the period of 75133.87 days. For frequencies

 and  in (61) corresponding to the periods
(according to Table 4) have the same value equal to
27.312 days. Assuming that the small differences in the
values of the frequencies  and  (and in the corre�
sponding periods) are caused by errors in calculations,
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at once we obtain an assessment of the quasi�diurnal
Poincaré period for a free libration of the Moon:

 days (62)

Accepting values  =  according to
the Table 3, we will obtain in addition to four equa�
tions considered above, four more equations for deter�
mination of the amplitude and a phase of the fourth
mode of free librations of the Moon (Table 5).

Nevertheless, the amplitude of this libration is
smaller in magnitude in comparison with the theoret�
ical value (see Table 4). This means that the specified
characteristics of a libration of the Moon can depend
on other possible factors and have to be studied in
more detail and fully in the future, including new
methods and approaches. For example, using the
astrometry method of observations from the Moon’s
surface (Hanada et al., 2004). Theoretical studies of
the forced and free librations of the Moon in the future
have to be performed on the basis of better models of
an internal structure of the Moon with a liquid and
solid core (Barkin, 2011).

For determination of an initial phase  (for the
epoch 2000.0 JD) and amplitude S of a free libration
of the Moon, we have a system of eight equations with
two unknowns (see the first two columns of Table 5), in
which we must take the following initial values for the
well�known arguments of the theory of orbital motion
of the Moon:   (Kudryav�
tsev, 2007). In Table 5, for every line of values of ampli�
tudes of variations, the corresponding values of an ini�
tial phase  and amplitude S are determined (they
are presented in the third and fourth columns of the
table). Values of a phase  are in degrees, and the
amplitude of the fourth mode S in arcseconds.

It is clearly seen that the initial value of the phase of
the fourth mode of the free librations of the Moon is
determined on the basis of fairly confident laser obser�
vations (values in area Π0 = –128°...–139°). The
amplitude of this free librations of the Moon is less
confident (with some scatter in the values

). Thus, all 8 equations from Table 5,
are approximately satisfied for an initial phase of a free
nutation of a liquid core  and for
values of amplitude  The optimum
values of these parameters determined by a method of
least squares are  and 

CONCLUSION

The analytical theory of the forced and free libra�
tions of a two�layer model of the Moon (with a liquid
ellipsoidal core) is developed. The main resonant
librations of the Moon are determined in Andoyer’s
variables and in classical variables of the theory of
physical librations in good agreement with the modern
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empirical theory constructed using the measurements
of laser ranging over the last 40 years (Rambaux and
Williams, 2011). At first, we determined the amplitude
and the initial phase and the period of the fourth mode
of free librations (Table 1) due to the liquid core. At the
same time, an explanation and interpretation of previ�
ously identified terms of the empirical theory was
given.

The period of a free libration of the Moon caused by a
liquid ellipsoidal core was estimated by us at 75133.87 days
or, respectively, 205.7 years. This period according to a
formula for the period (29) corresponds to the sum of
dynamic meridian compressions of the Moon in

 =  With the assumption of simi�
larity of dynamic compressions of all the Moon and its
core, the following estimates were obtained:  =

 . Eight free librations in
classical variables of the theory of rotation of the
Moon ρ,  and   from the general list of uniden�
tified librations of the Moon identified as a result of
the analysis of laser observation (Rambaux and Will�
iams, 2011), obtained, in our work, an explanation
and mechanical interpretation (Table 4). In addition,
in the work the small free libration in longitude τ was
found, also caused by the influence of a liquid ellipsoi�
dal core, with a period of 7449.89 days and with a small
amplitude of about 0′′001 (Table 4).

In the future we plan to execute more wide�ranging
studies of dynamic effects in rotation of the Moon due
to its liquid core and solid core, including research
using the dynamics of interacting gravitational shells
of celestial bodies (Barkin, 2002; 2011; Barkin et al.,
2012). The relevance of these researches is connected
with the increasing accuracy of laser observation of the
Moon and with the development and implementation
of projects studying the rotation of the Moon directly
from the surface of the Moon, in particular, in the Jap�
anese ILOM project (Hanada et al., 2004). Results of
this work also testify that the specified characteristics
of libration of the Moon depend on other possible
factors and have to be studied in more detail and more
precisely in the future, including with use of new
methods and approaches. For example, an astrometry
method of observations from the Moon surface in the
Japanese ILOM project (Hanada et al., 2004). Theo�
retical researches of the forced and free librations of
the Moon in the future will be executed on the basis of
more perfect models of an internal structure of the
Moon with a liquid core and solid core (taking into
account their eccentric position, gravitational interac�
tion, oscillations of their centers of masses, etc. factors
(Barkin, 2011)).

Results obtained in this paper provide new evi�
dence and confirm the existence of a liquid core by an
independent method based on dynamic studies of the
rotation of the Moon.
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