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NO ITERATED IDENTITIES SATISFIED BY ALL FINITE GROUPS

ALEXEI BELOV AND ANNA ERSCHLER

ABSTRACT. We show that there is no iterated identity satisfied by all finite groups. For w

being a non-trivial word of length l, we show that there exists a finite group G of cardinality

at most expplCq which does not satisfy the iterated identity w. The proof uses the approach

of Borisov and Sapir, who used dynamics of polynomial mappings for the proof of non

residual finiteness of some groups.

1. INTRODUCTION

It is well-known and not difficult to see that there is no non-trivial group identity which

is satisfied by all finite groups. We strengthen this fact by showing that there is no iterated

group identity which is satisfied by all finite groups, and we construct a group violating

a given iterated identity, providing an upper bound for the cardinality of this group. We

recall the definition of iterated identity from [18]. We say that a group G satisfies an Engel

type iterated identity w if for any x1, . . . , xm P G there exists n such that

(1)

w˝npx1, x2, . . . , xmq “ wpwp. . . pwpx1, x2, . . . , xmq, x2, . . . , xmq, x2, . . . , xmqq “ e.

In the sequel, we call Engel type iterated identities for short iterated identities. For defini-

tions other than that of Engel type see [18].

The fact the group satisfies an iterated identity depends only on the element of the free

group represented by this word, in other words, the property to satisfy an iterated identity

does not change if we replace a word by a freely equivalent one, in particular, any group

satisfies w if w is freely equivalent to an empty word.

The definition of iterated identities is close to the notion of ”correct sequences”, stud-

ied by Plotkin, Bandman, Greuel, Grunewald, Kuniavskii, Pfister, Guralnick and Shalev in

[3, 23, 31]. Examples of such sequences, without this terminology, were previously con-

structed by Brandl and Wilson [12], Bray and Wilson [13] and Ribnere to characterize

finite solvable groups. See also [20].

For some groups and some classes of groups a priori not bounded number of iteration

in the definition of iterated identity is essential, as for example it is the case for the first

Grigorchuk group, which is a 2 torsion group [22], that is, it satisfies the iterated identity

wpx1q “ x2
1, but this group does not satisfy any identity by a result of Abert [1]. For some

other groups the number of such iterations is bounded for all x1, . . . , xn, a strong version

of this phenomena is when such bound does not depend on the iterated identity w, as it is

for example the case for any finitely generated metabelian group [18].
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Theorem 1. Let wpx1, . . . , xmq be a word (on n letters, m ě 1) which is not freely

equivalent to an empty word. Then there exists a finite group G such that G does not

satisfy an iterated identity w.

Moreover, there exists C ą 0 such that for any n ě 1 and any word w on n letters the

group G can be chosen to have at most C1 expplCq elements, where l “ lpwq is the length

of the word w.

An upper bound for the cardinality of a finite group in the second part of the theorem

might not be optimal. One can ask whether one can replace expplCq by lC . For related

questions see also Section 5.

A standard argument to show that there is no identity for all finite groups is to observe

that free non-Abelian groups are residually finite, and to conclude that if w is an identity

satisfied by all finite groups, then the free group F2 also satisfies w. Observe that this

argument does not work for iterated identities. Indeed, free groups are residually nilpotent,

however every nilpotent group satisfies the iterated identity wpx1, x2q “ rx1, x2s, while a

free group does not satisfy any non-trivial iterated identity.

To prove the theorem, we show that for any word w on x1, x2 there exists n ě 1 such

that w˝npx1, x2q “ x1 admits a solution with x1 ‰ 1 in some finite group. Here w˝n is as

defined in the equation 1.

Much progress has been achieved in recent years in understanding the image of the

verbal mapping from Gn Ñ G px1, . . . , xnq Ñ wpx1, . . . , xnq. Larsen, Shalev and

Tiep prove in [28] that for any word w and for any sufficiently large finite simple non-

Abelian group wpGnqwpGnq “ G, that is, for any g P G there exists x1, . . . , xn P G

and x1
1, . . . , x

1
n P G such that wpx1, . . . , xnqwpx1

1, . . . , x
1
nq “ g. Moreover, for some

words w such verbal mapping turn out to be surjective. Libeck, O’Brien , Shalev and Tiep

[29], proving the Ore conjecture, show that this is the case for wpx1, x2q “ rx1, x2s and

any finite simple non-Abelian group. Observe however that the image of the mappings

from Gn Ñ Gn which sends px1, . . . , xnq to pwpx1, . . . , xnq, x2, x3, . . . , xnq are far from

being surjective, and the structre of periodic points for such mappings seems to be less

understood.

To solve the equation w˝mpx1, x2q “ x1, we use the idea and the result of Borisov

and Sapir from [11], who use quasi-periodic points of polynomial mappings to prove non-

residual finiteness of some one relator groups, namely of what is called mapping tori (also

called ascending HNN extensions) of injective group endomorphisms: those are groups

of the form px1, x2, . . . , xk, t|R, txit
´1 “ wi, i ď i ď kq, where xi Ñ wi is an injective

endomorphism of the group px1, x2, . . . , xi|Rq.

In contrast with mapping tori of groups endomorphisms, general one relator groups are

not necessary residually finite, and it is a long standing problem to characterize residually

finite one relator groups. A conjecture of Baumslag, proven by Wise in [35] states that one

relator group containing a non-trivial torsion element is residually finite. The situation for

groups without torsion elements is less understood.

Consider a sequence of the one relator group Gm “ rx1, x2 : w˝mpx1, x2q “ x1s. If a

finite quotient of a group Gm is such that the image of x1 is not equal to one in this finite

quotient, then in this finite quotient the image of x1 is a non-fixed periodic point for the

verbal map x Ñ wpx, yq, for a fixed y.

We will construct finite quotients of groups Gm as subgroups of SLp2,Kq, for an ap-

propriately chosen finite field K. In Section 2 we outline the proof of the theorem and

prove its first claim. To do this, we choose a two-times-two integer valued matrix y0
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which can be one of the free generators of a free non-Abelian subgroup in SLp2,Cq, re-

gard wpx, y0q as a function of x, observe that the entries of wpx, y0q are rational functions

Ri1,i2px1,1, x1,2, x2,1, x2,2q in x1,1, x1,2, x2,1, x2,2. Multiplying by a power of the de-

terminant of the matrix for x, we get polynomials Hi1,i2px1,1, x1,2, x2,1, x2,2q. We will

need to check that the system of the equation Hi1,i2px1,1, x1,2, x2,1, x2,2q “ x
Q
i satisfies

the assumption of Theorem 3.2 of [11] and we aplly this theorem to solve this system of

equations, assuming that q is a large enough prime and Q is a large power of q.

We check that the image on the 4-th iteration of the polynomial mapping in ques-

tion contains at least one point with non-zero determinant, and such that the matrix is

not a diagonal matrix. Hence we obtain at least one non-trivial solution of the system

of the equations for Hi1,i2 , which is not a diagonal matrix with non-zero determinant.

Normalizing, if necessary, this solution by the square of the determinant of the corre-

sponding matrix, we will obtain a non-identity solution for the system of the equations

Ri1,i2px1,1, x1,2, x2,1, x2,2q “ x
Q
i1,i2

. This solution belongs to a finite extension of Fq .

Such solution provides a non-identity periodic point x for iteration of w, for some m ě 1,

and this implies in particular that w is not an iterated identity in the subgroup generated by

x and y0 in SLp2, kq.

In Section 3 we obtain a bound for the cardinality of a subgroup SLp2,Kq. To do

this, we need to control the cardinality of the finite field K. For this purpose, instead of

using Theorem 3.2 of of [11], we prove and use an effective version of that theorem, see

Theorem 2. Given n polynomials fi on n variables over a finite field, and a polynomial

D0, this theorem provides a lower bound for Q in terms of degres of these polynomials

with the following property. If D0 is equal to zero on any solution over algebraic closure

of Fq of the system of equations

fipx1, . . . , xnq “ x
Q
i ,

then D is equal to zero on any point of the n-th iteration of the polynomial mapping f “
pf1, . . . , fnq. To prove this theorem we follow the strategy of the proof of Borisov Sapir,

the main ingredient of the proof is Lemma 3.4, which is an effective version of Lemma 3.5

in [11]. Given a solution a1, . . . , an of the system of the equations, this lemma provides

an estimate for k such that pf pnq
i ´ Constqk belongs to the localisation at pa1, a2, . . . , anq

of the ideal generated by fipx1, . . . , xnq ´ x
Q
i , for each i. Here f

pnq
1

, . . . , f
pnq
n is the n-th

iteration of the polynomial mapping f . As the last step of the proof, rather than using

one of two possible arguments used in [11], we make use of the fact that the polynomials

H
p4q
i ´ x

Q
i form a Gröbner basis with respect to Graded Lex order.

In section 4 we give a more general version of Theorem 1, where instead of iterations

on one variable we consider iterations of verbal mappings on several variables.

2. IDEA OF THE PROOF OF THEOREM 1 AND THE PROOF OF ITS FIRST CLAIM.

We start with a not difficult lemma that shows that it is enough to consider only iterated

identities on two letters.

Lemma 2.1. Suppose that a class of groups does not satisfy any non-trivial iterated on

two letters. Then is no iterated identity satisfied by this class of groups.

Proof. Suppose that w̄px1, x2, . . . , xmq is an iterated identity and w is not freely equiv-

alent to an empty word. Choose u2px, yq, . . . , umpx, yq and put

wpx1, x2q “ w̄px1, u2px1, x2q, umpx1, x2qq.
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It is clear that w is an iterated identity. Now suppose that u2, . . . , un are such that

x1, u2px1, x2q, ..., umpx1, x2q generate a free group of rank m in the free group gener-

ated by x1 and x2. Observe that in this case w is not freely equivalent an empty word, and

thus w is a non-trivial iterated identity on two letters.

Take a non-trivial word wpx, yq on two letters. The following obvious remark shows

that for the proof of the theorem it is enough to consider words representing elements in

the commutator subgroup of F2.

Remark 2.1. If w is a word on x, y which depends on y only, then w is freely equivalent

to ym, m ‰ 1. If m ‰ 1 and M ą m is relatively prime with m, then w is not iterated

identity in a finite cyclic group of M elements.

More generally, if w is a word on x, y which does not belong to the commutator group

rF2, F2s, then wpx, yq “ xmykw̄, where at least one of k and m is not equal to 0. Con-

sidering the iterated values of wpx, yq in 0, y and 0, x we conclude that w is not iterated

identity in a finite cyclic group of M elements, for any M which is relatively prime with

m.

In the sequel we assume that w is a word on two letters representing an element of the

commutator subgroup of F2.

Now consider two times two matrices x and y

x “
ˆ

x1,1 x1,2

x2,1 x2,2

˙

and y “
ˆ

y1,1 y1,2
y2,1 y2,2

˙

Convention 2.1. We assume that yi1,i2 Ă Z, i1, i2 “ 1, 2, are such that for some choice

of xi in C, the group generated by the matrices x and y is free,

y is in SLp2,Rq and x is in SLp2,Cq. For example, one can take

y “
ˆ

1 0

1 1

˙

Convention 2.2 (A stronger version). We asume that yi Ă Z, 1 ď i ď 4, are such that for

some choice of xi in Z, the group generated by the matrices x and y is free and x, y are in

SLp2,Zq. For example, one can take

y “
ˆ

1 0

2 1

˙

First observe that we can chose yi as in the convention 2.2, since SLp2,Zq is virtually

free, and in particular this group contains free subgroups.

For example take any integer m ě 2 (e.g. m “ 2), put α “ β “ m and consider

x “
ˆ

1 α

0 1

˙

, and y “
ˆ

1 0

β 1

˙

.

The subgroup generated by such x and y is free whenever α “ β ě 2 are positive

integers (see e.g. Theorem 14.2.1 in [25].) Moreover, it is easy to see that the subgroup

generated by x and y depends up to an isomorphism only on the product αβ [10]; this

group is also free for any α and β such that αβ is transcendental [10, 19] (the group is

known to be free for example for any complex α, β such that |αβ|, |αβ ´ 2| ą 2, |αβ ` 2|
[10], but apparently it is not known in general when it is free).

In particular, y for β “ 1 satisfies the assumption of the Convention 2.1, since it is

sufficient to consider x as above with α which is transcendental.
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Now we fix integers yi1,i2 , i1, i2 “ 1, 2 as in Convention 2.1. Note that

x´1 “ 1

x1,1x2,2 ´ x1,2x2,1

ˆ

x2,2 ´x1,2

´x2,1 x1,1

˙

Observe that

wpx, yq “
ˆ

R1,1pxi1,i2 , yi1,i2q R1,2pxi1,i2 , yi1,i2q
R2,1pxi1,i2 , yi1,i2q R2,2pxi1,i2 , yi1,i2q,

˙

where Rj1,j2 , j1, j2 “ 1, 2 are rational functions in xi1,i2 , yi1,i2 , i1, i2 “ 1, 2 with

integer coefficients. We consider fixed integers yi1,i2 , with y P SLp2,Zq (e.g. y1,1 “ 1,

y1,2 “ 0, y2,1 “ 2, y2,2 “ 1) as above, and then Rj1,j2pxi1,i2q “ Rj1,j2pxi1,i2 , yi1,i2q are

rational functions in x1,1, x1,2, x2,1 and x2,2 with integer coefficients. For each j1, j2 it

holds

Rj1,j2px1,1, x1,2, x2,1, x2,2q “ Hj1,j2px1,1, x1,2, x2,1, x2,2q{px1,1x2,2 ´ x1,2x2,1qs,
where Hj1,j2 are polynomials with integer coefficients in x1,1, x1,2, x2,1, x2,2 and s is the

number of occurrences of x´1 in w.

Observe that

H “
ˆ

H1,1px1,1, x1,2, x2,1, x2,2q H1,2px1,1, x1,2, x2,1, x2,2q
H2,1px1,1, x1,2, x2,1, x2,2q H2,2px1,1, x1,2, x2,1, x2,2q

˙

is not an identity matrix.

Now observe that if y satisfies the assumption of Convention 2.2, then we know more-

over that for some values of xi P Z the corresponding matrices wpx, yq and wpx1, yq do not

commute. Indeed, observe that if wpx, yq is a freely reduced word on two letters that has

at least one entry of x or x´1, then wpx, yq and wpxk , yq do not commute in the free group

generated by x and y; this implies in particular that at least one of the rational functions

R1,2 and R2,1 is not zero, and therefore that at least one of polynomials H1,2 and H2,1 is

not zero.

We consider Q to be a power of q and we want to solve over field K of characteristic q

the system of four equations:

(2) Rj1,j2pxi1,i2 , yi1,i2q “ x
Q
j1,j2

,

for j1, j2 “ 1, 2. To do this, we start by solving the system of polynomials equations:

(3) Hj1,j2pxi1,i2 , yi1,i2q “ x
Q
j1,j2

,

j1, j2 “ 1, 2.

It is easier to work with the system of the equations (3) rather then (2) is that polyno-

mials Hj1,j2pxi1,i2 , yi1,i2q ´ x
Q
j1,j2

form a Groebner basis (in the next section we recall a

definition and basic properties of Groebner bases), while polynomials obtained from ratio-

nal functions pRj1,j2pxi1,i2 , yi1,i2q “ x
Q
j1,j2

q, after multiplication on the denominator, do

not in general form such basis.

The solutions of the system of polynomial equations are Zariski dense in the image

the fourth iteration of the polynomial mappings from F̄q to F̄q
4
, where F̄q denotes the

algebraic closure of Fq by Theorem 3.2 in Borisov Sapir [11]; for a more general statement

see Corollary 1.2 on page 5 of the preprint of Hrushovski [24]. Indeed, observe we know

that the dimension of the fourth iteration of H is not zero, since the image contains at least

two points over the field on q elements, for any sufficiently large q. (And there exists a
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variety of dimension greater than 0 , such that the iteration of the polynomial mapping

corresponding to H , restricted to this variety, is dominant). Moreover, observe that for

sufficiently large q there is at least one point v1,1, v1,2, v2,1, v2,2 in the image of f such that

v1,1v2,2 ´ v1,2v2,1 ‰ e and either v2,1 or v1,2 is not equal to 0. Indeed, suppose that w is

reduced word containing at least one entry of x or x´1. Take any x, y as in Convention

2.2, that is x and y are in SLp2,Zq such that x and y generate a free subgroup. Observe

that wpxm, yq belongs to SLp2,Zq for all m, in particular, determinant of this matrix is 1.

Observe that wpx, yq and wpx2, yq to not commute in the free group, and hence they do

not commute in SLp2,Zq. If q is large enough, their images under the quotient map do not

commute in SLp2, Fqq. Therefore, either v2,1 or v1,2 for one of these two matrices is not

equal to 0, and we know v1,1v2,2 ´v1,2v2,1 “ 1 in Fq . We conclude, that for some point in

the image of f over Fq either v2,1pv1,1v2,2´v1,2v2,1q ‰ 0 or v1,2pv1,1v2,2´v1,2v2,1q ‰ 0.

Without loss of generality we can suppose that there exists a point in the image of f such

that v2,1pv1,1v2,2 ´ v1,2v2,1q.

In this case, we know that there exist at least one solution of the system of the polyno-

mial equations in F̄q , such that x2,1px1,1x2,2 ´ x1,2x2,1q ‰ 0. Consider a field generated

by elements of this solution x1,1, x1,2, x2,1, x2,2. This field is clearly a finite extension of

K , which we denote by K.

Observe that if xi1,i2 , i1, i2 “ 1, 2 is the solution of the system of the equations above

over K, then there exist m such that xi is m periodic point in the group of two times two

invertible matrices over K, for polynomial mapping corresponding to H . Indeed observe

that

H
p4qp2q

j1,j2
pxi1,i2 , yi1,i2q “ H

p4q
j1,j2

pHp4q
j1,j2

pxi1,i2 , yi1,i2q, yiq “ H
p4q
j1,j2

pxQ
i1,i2

, yi1,i2q “ pxQ2

j1,j2
q

and, arguing by induction, we obtain that

H
p4lq
j1,j2

pxi1,i2 , yi1,i2q “ x
pqlq
j1,j2

.

Observe that there exist l such that x
pqlq
i1,i2

“ xi (for i1, i2 “ 1, 2).

Now consider

K
1 “ Kr

?
detxs “ Kr

b

px1,1x2,2 ´ x1,2x2,1qs.

Recall that we know that px1,1x2,2 ´ x1,2x2,1q ‰ 0. Put x1 “ x{
a

px1,1x2,2 ´ x1,2x2,1q,

x1 P SLp2,K1q.

Note that x1, y is 4l periodic in SLp2,K1q: x1 ‰ e in SLp2,K1q and the n-th iteration

w˝n of w satisfies

w˝npx1, yq “ wpwp. . . wpx1, yq, y, . . . , yq “ x1.

From Remark 2.1 we know that it is sufficient to consider words w such that the total

number of x in w is equal to zero (otherwise, w is not an iterated identity in some finite

cyclic group). So we assume that wpx, yq is such that the total number of x is equal to

zero. Then wpe, zq “ e for all z. Therefore, for any periodic point x1 ‰ e it holds

w˝npx1, yq ‰ e

for some positive integer n, and hence w is not an iterated identity for SLp2,K1q.

Remark 2.2. Alternatively, the first claim of the theorem can be proved by combining

the result of Borisov and Sapir about residual finiteness of the mapping tori (Theorem

1.2 in [11], rather than its proof , as explained above) with characterization of residual

finiteness of HNN extension in terms of ”compatible” subgroups (Theorem 1 in [30]), in
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case when the corresponding endomorphism is injective, and then reduce the general case

in our theorem (when the endomorphism is not necessary injective) to this one.

3. AN EFFECTIVE VERSION OF THEOREM 3.2 OF BORISOV AND SAPIR IN [11] AND

THE PROOF OF THE SECOND PART OF THE THEOREM.

Theorem 2 below is an effective version of Theorem 3.2 in [11]. For a prime q, Fq

denotes the filed on q elements.

Theorem 2. Let q be a prime number, d, n ě 1. Let f “ f1, . . . , fn be polynomials

on n variables of degree ď d, with coefficients in Fq , such that fip0, . . . , 0q “ 0 for all

i : 1 ď i ď n. Assume that Q is a power of q and D0 ě 1 satisfy

Q{D0 ą npn ` 1qdn2`1.

Consider a polynomial D of degree at most D0 over Fq on n variables, such that

Dpx1, . . . , xnq “ 0

for all xi P F̄q that are solution of the system of the equations

(4) fipx1, . . . , xnq “ x
Q
i ,

for all i : 1 ď i ď n. Then D is equal to zero on all points in the image of F̄n
q under

f pnq “
´

f
pnq
1

, . . . , f
pnq
n

¯

.

We need this theorem in a particular case when there is no non-zero solution for the sys-

tem of the equations. In this case it is sufficient to considerD of degree 1, Dpx1, . . . , xnq “
xi for some i, and we get

Corollary 3.1. Let q be a prime number, d, n ě 1. Let f “ f1, . . . , fn be polynomials

on n variables of degree ď Df , with coefficients in Fq , such that fip0, . . . , 0q “ 0 for all

i : 1 ď i ď n. Suppose that there exists v1, . . . , vn P Fq and i : 1 ď i ď n such that

f
pnq
i pv1, . . . , vnq ‰ 0. Suppose that Q is a power of q such that

Q ą npn ` 1qdn2`1.

Then the system of equations

fipx1, . . . , xnq “ x
Q
i ,

has at least one non-zero solution in F̄q .

More precisely, for the proof of Theorem 1 we need the to find a non-zero solution of

the system of n equations, n “ 4, satisfying additionally an inequality x1x4 ´ x2x3 ‰ 0,

and to obtain such solution we apply Theorem 2 for the polynomials Dpx1, x2, x3, x4q of

degree 3 the form

Dpx1, x2, x3, x4q “ px2x1x4 ´ x2x3qx2

and

Dpx1, x2, x3, x4q “ px2x1x4 ´ x2x3qx3.

(In our matrix notation of the previous section these xi correspond to x1 “ x1,1, x2 “ x1,2,

x3 “ x2,1, x4 “ x2, 2). For a more general version in Theorem 3, we will need to find

a system of 4s equations, each solution in not proportional to an identity matrix, and the

determinants of the corresponding matrices are not equal to zero. To to this, we will apply

theorem 2 to the polynomial of degree 3s, which as a product of the polynomials as above.
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Given pα1, . . . , αnq, pβ1, . . . , βnq P Zn we say that pα1, . . . , αnq is greater than pβ1, . . . , βnq
in the lexicographic order if for the minimal i such that αi ´ βi ‰ 0q it holds αi ą βi.

Now we recall the definition of the graded lexicographic order (or for short graded

lex order). Given two monomials xα1

1
¨ ¨ ¨xαn

n and x
β1

1
¨ ¨ ¨xβn

n , we say that xα1

1
¨ ¨ ¨xαn

n is

greater than x
β1

1
¨ ¨ ¨xβn

n in the graded lex order, if either the degree of the first monomial is

greater, that is, α1 `¨ ¨ ¨`αn ą β1 `¨ ¨ ¨`βn, or if the degrees are equal ( α1 `¨ ¨ ¨`αn ą
β1 ` ¨ ¨ ¨ ` βn ) and α1, . . . , αn is greater than β1, . . . , βn in the lexicographic order.

Lexicographic order if a particular case of monomial order, that is, it is a total ordering

of Zn, satisfying α ` γ is greater then β ` γ whenever α is greater then β and it is a well-

ordering, meaning that any non-empty subset of Zd has a minimal element with respect to

this order (see Section 2, Chapter 2 in [16]). Fixing a monomial order and given a poly-

nomial φ “ ř

i aα1,i,...,αji
x
α1,i

1
x
α2,i

2
¨ ¨ ¨xαn,i

n , one can speak about its leading monomial

x
α1,i

1
x
α2,i

2
¨ ¨ ¨xαn,i

n denoted byLMpφq, and its leading term aα1,i,...,αji
x
α1,i

1
x
α2,i

2
¨ ¨ ¨xαn,i

n ,

denoted by LT pφq.

This allows to use division algorithm in Krx1, . . . , xns, K is some field (see Theorem

3 and its proof, Section 3, Chapter 2 in [16]). Given an ordered tuple f1, . . . , fs with

respect to a fixed monomial order, and given a polynomial f P Krx1, . . . , xns, the division

algorithm procedes as follows. Given f , it looks for a minimal i such that the leading

term of f is divided by the leading term of fi, and replaces f by f ´ fig, where g is the

monomial such that LT pfq “ LT pfiqg. At the end we obtain

f “ a1f1 ` ¨ ¨ ¨ ` asfs ` r,

where r is such that no term in r is divisible by a leading term of some fi.

In general, given some tuple fs, this remaining term r is not defined uniquely by the

decomposition above, it is difficult therefore to work with the division algorithms. This

problem no longer occurs if we assume that fi form a a Gröbner basis (also called a

standard basis). There are several equivalent ways to define a Gröbner basis, one of such

ways is as follows. Elements of φ1, f2, . . . , φm P Krx1, . . . , xns are said to be a Gröbner

basis, if the ideal of Krx1, . . . , xns generated by leading terms of φj is equal to the ideal,

generated by the leading term of the ideal I generated by φj (Definition 5 in [16]). In

general, the ideal of leading terms of I can be larger than that generated by leading terms

of φj . For a Gröbner basis this can not happen, and this provides an effective way to

determine whether a polynomial F belongs to the ideal I generated by fj .

For example, given polynomials fi (i : 1 ď i ď n) on x1, x2, . . . , xn, consider

polynomials φi “ fi ´ x
Q
i . Suppose that that the degrees of fi are smaller than Q, for all

i : 1 ď i ď n. Then the leading terms of fi with respect to graded lex order is x
Q
i . The

Least Commond Multiple of the Leading Monomials of φi and φj is equal to their product

, x
Q
i x

Q
j , and hence by Diamond Lemma φi is a Gröbner basis (see e.g. Theorem 3 and

Proposition 4 in Ch.2, Sect.9 of [16]).

A straightforward observation in Lemma 3.1 below is Lemma 3.3 from [11]. While the

formulation of that lemma in [11] states ”for Q large enough”, the proof shows that it is

sufficient to take Q which greater than the maximum of the degrees of fi, as stated below,

and it is not difficult to estimate this codimension.

Lemma 3.1. [a version of Lemma 3.3 in [11]]

Let f1, . . . , fn be polynomials on x1, . . . , xn over Fq , q is a prime number. Take Q such

that Q is greater than the maximum of the degrees of fi, i : 1 ď i ď n. Let IQ be the ideal

in F̄qrx1, . . . , xns generated by polynomials fipx1, . . . , xnq ´ x
Q
i , i : 1 ď i ď n. Then IQ

has finite codimension in F̄qrx1, . . . , xns, this codimension is at most Qn.
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This shows in particular, that any solution (in F̄q the system of equations fipx1, . . . , xnq “
x
Q
i belongs to a finite extension of Fq , of degree at most Qn. Observe that a cardinality of

such finite extension is at most qQ
n

.

Proof. Observe that if a monomial on x1, x2, . . . , xn is divisible by x
Q
i , then this

monomial is equivalent pmod IQq to a sum of monomials of lesser degree. Indeed,

x
Q
i

ź

xαi

i ” fipx1, . . . , xnq
ź

xαi

i .

All monomials of fi have degree strictly lesser than Q, and the degree of monomials on

the right hand side is therefore lesser than Q `
ř

i αi. Therefore, any polynomial on x1,

x2, . . . , xn is equivalent pmod IQq to a linear combinations of monomials of the form
ś

xαi

i , such that αi ă Q for all i. Observe that the number of such monomials is Qn

Remark 3.1. We will use only the (trivial) upper bound for the codimension, but it is not

difficult to see that the codimension is in fact equal to Qn. Indeed, as we have already

mentioned the fi ´ x
Q
i is a Gröbner basis, and by a ”Diamond lemma” we know that any

linear combination of
ś

xαi

i , with at least one non-zero coefficient , such that αi ă Q

does not belong to IQ.

Given polynomial fi, 1 ď i ď n over some field K, we can consider a mapping f “
pf1, f2, . . . , fnq from Kn to Kn. For j ě 1 we denote by f pjq “ pf pjq

1
, . . . , f

pjq
n q its j-th

iteration.

We recall in Lemma 3.2 below another not difficult lemma (Lemma 3.4 in [11]), for the

convenience fo the reader we recall its proof.

Lemma 3.2. [Lemma 3.4 in [11]] Let fi be polynomials on x1, . . . , xn with coefficients in

Fq , q is a prime number, and Q be a power of q. For each j ě 1 the j-th iteration of the

polynomial mapping f “ pf1, . . . , fnq satisfies for all i : 1 ď i ď n

f
pjq
i ´ x

Qj

i P IQ,

where IQ is the ideal generated by fi ´ X
Q
i , i : 1 ď i ď n.

Proof. The proof is by induction on j. Suppose that the statement is true for all j ď m.

Observe that

f
pm`1q
i px1, x2, . . . , xnq “ fi

´

f
pmq
1

, f
pmq
2

, . . . , f pmq
n

¯

” fi

´

x
Qm

1
, . . . , xQm

n

¯

The last congurence above follow from the induction hypothesis for j “ m. Observe also

that since Q is a power of q, over any field of characteristic q it holds

fi

´

x
Qj

1
, . . . , xQj

n

¯

“ fipx1, . . . , xnqQj ” x
Qj`1

i pmod IqQ,
the last congruence is a consequence of the induction hypothesis for j “ 1.

Lemma 3.3. Let F1, F2, Fn`1 are polynomials on x1, x2, . . . , xn over some field K.

Suppose that the degrees of Fi are ď d. If s ą 0 is such that the binomial coefficients

satisfy

Cn`1

s`n`1
ě Cn

sd`n,

then there exists a non-zero polynomial Ψ over K on n ` 1 variables of degree at most s

such that

ΨpF1, . . . , Fn`1q “ 0.

The assumption on s is in particular satisfied if

s ě pn ` 1qdn
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In the lemma above, it is essential that s ě Const ¨ dn.

Proof. It is clear that it is sufficient to consider the case when at least one of fi has at

least one non-zero coefficient. Take some integer s and a polynomial Ψ of degree s. Let us

compute the number of possible monomials on n variables x1, . . . , xn in ΨpF1, . . . , Fn`1q.

All monomials are of degree at most sd, that is , of the form X
β1

1
X

β2

2
¨ ¨ ¨Xβn

n , βi ě 0,
ř

j βj ď sd. This is the number to write sd as the sum of n ` 1 non-negative summands,

which is equal to Cn
sd`n. Consider possible monomials of degree ď s on n ` 1 variables,

they are of the form yα1

1
yα2

2
¨ ¨ ¨ yαn`1

n`1
, αi ě 0,

ř

j αj ď n and hence their number is equal

to Cn`1

s`n`1
.

Take s such that

Cn`1

s`n`1
ě Cn

sd`n.

Observe that there exists a non-zero polynomial Ψ of degree at most s such that

ΨpF1, . . . , Fn`1q “ 0.

Indeed, if we consider the coefficients of the polynomial Ψ (taking value in the field K)

as variables, we get Cn
sd linear equations on at least Cn`1

s`n`1
variables. Since the number

of variables greater or equal to the number of linear equation, this system has at least one

non-zero solution over k.

Finally, observe that the assumption on s in the formulation of the Lemma is satisfied if

ps ` 1qps ` 2q ¨ ¨ ¨ ps ` n ` 1q ě pn ` 1qpsd ` 1q ¨ ¨ ¨ psd ` nq,
and the latter is satisfies whenever s ` n ` 1 ě s ě pn ` 1qdn.

Lemma 3.3 allows us to obtain an effective version of Lemma 3.5 in [11]:

Lemma 3.4. Given d, take an integer Q which is a power of a prime q such that Q ą
pn ` 1qdn2

and k “ pn ` 1qdn2

. Consider polynomials f1, f2, . . . , fn over Fq on n

variables. Suppose that the degrees of fi are ď d. Let a1, . . . , an in the algebraic closure

F̄q of Fq are the solution of the system of equations

fipa1, a2, . . . , anq “ a
Q
i .

Then for all i : 1 ď i ď n the polynomial

pf pnq
i px1, . . . , xnq ´ f

pnq
i pa1, . . . , anqqk

is contained in the localization of IQ at a1, . . . , an. As before, IQ denotes the ideal in

F̄qrx1, . . . , xns generated by polynomials fipx1, . . . , xnq ´ x
Q
i , i : 1 ď i ď n.

Proof. For each i : 1 ď i ď n consider the i-th coordinate of the iterations of f :

F1,i “ xi, F2,ipx1, . . . , xnq “ fipx1, . . . , xnq, F3,ipx1, . . . , xnq “ f
p2qpx1,...,xnq
i , . . . ,

Fn`1,ipx1, . . . , xnq “ f
pnqpx1,...,xnq
i . Observe that for all j the degree of Fj,i is at most

dn.

Apply lemma 3.3 to F1,i, F2,i, . . . , Fn`1,i. We conclude that for each i : 1 ď i ď
n there exists a non-zero polynomial Ψi over Fq on n ` 1 variables of degree at most

pn ` 1qpdnqn such that

Ψipxi, fipx1, . . . , xnq, fipx1, . . . , xnq, . . . , fipx1, . . . , xnqq “ 0

The rest of the proof follows the argument from [11]: using the fact that f
pjq
i ´x

Qj

i P IQ
(see Lemma 3.2), we can rewrite

Ψipxi, fi, f
p2q
i , . . . , f

pnq
i q
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as a polynomial PQ,i in one variable xi modulo IQ. Since Ψipxi, fi, f
p2q
i , . . . , f

pnq
i q “ 0,

we have PQ,ipxiq P IQ

By the assumption of the lemma, Q ą pn ` 1qdn2

, and hence Q is larger than the

degree of Ψi. Observe that in this case the polynomial in xi we get is not zero. (Indeed,

take maximal j such that yj is present at least in one monomial of Ψ; among monomials

of Ψ consider those where the degree of yj is maximal. Among such monomials, if there

several like this, take maximal j1 such that yj1 is present, take a monomial where its degree

is maximal, etc. In this way we obtain some monomial in Ψ which will give maximal

degree of xi for PQ,i). Note that the degree of PQ,i is at most Qn degΨ ď Qnpn` 1qdn2

.

Write

PQ,ipxiq “
M
ÿ

m“1

bmpxi ´ aiqm,

here bm P F̄q , 1 ď m ď M are such that bM ‰ 0.

It is clear that M ď degPQ,i ď Qnpn ` 1qdn2

, and in particular

PQ,ipxq “ px ´ aiqLupxq,

where L ď M ď Qnpn ` 1qdn2

and the polynomial upxq is such that upaiq ‰ 0. Recall

that by the assumption of the lemma k “ pn ` 1qdn2

. It is essential for the proof that k

does not depend on Q.

Since PQ,ipxiq P IQ, we conclude that pxi ´ aiqL P I
a1,a2,...,an

Q . We have Qnk ě L,

and therefore pxi ´ aiqQ
nk P I

a1,a2,...,an

Q .

By the assumption of the Lemma, fipa1, . . . , anq “ a
Q
i . Since the characteristic of the

field is p, this implies that f
pmq
i pa1, . . . , anq “ a

Qm

i for all m ě 1 . Hence by Lemma 3.2

we obtain

f
pnq
i px1, . . . , xnq´f

pnq
i pa1, . . . , anq “ f

pnq
i px1, . . . , xnq´a

Qn

i ” x
Qn

i ´a
Qn

i pmod I
pa1,...,an

Q q

Since the characteristic of the field is p and Q is a power of p, we know that x
Qn

i ´ a
Qn

i “
pxi ´ aiqQ

n

. Therefore we can conclude that

´

f
pnq
i px1, . . . , xnq ´ f

pnq
i pa1, . . . , anq

¯k

“ pxi ´ aiqkQ
n ” 0 pmod I

a1,...,an

Q q

As a corollary, we obtain an effective version of Lemma 3.6 in [11].

Corollary 3.2. Let q be a prime number, d, n ě 1. Consider n polynomials fi, 1 ď i ď n

on n variables, with coefficients in Fq , of degree at most d. Take a polynomial D with

coefficients in Fq , which vanishes on all solutions in F̄q of the system of the equations

fipa1, a2, . . . , anq “ a
Q
i

Assume, as in Lemma 3.4, that Q ą pn ` 1qdn2

and k “ pn ` 1qdn2

. Put K “ pk ´
1qn ` 1. Then for any ai, 1 ď i ď n which the solution of the above mentioned system of

polynomial equations

´

Dpf pnq
1

px1, x2, . . . , xnq, ..., f pnq
n px1, x2, . . . , xnqq

¯K

“ 0 pmod I
pa1,...,anq
Q q.

We recall that IQ denotes the ideal in F̄qrx1, . . . , xns generated by polynomials fipx1, . . . , xnq´
x
Q
i , i : 1 ď i ď n.
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Proof of Corollary 3.2. Take ai P F̄q such that fipa1, a2, . . . , anq “ a
Q
i . We have

f
pjq
i pa1, . . . , anq “ a

Qj

i , for all j ě 1. RewriteDpx1, . . . , xnq as a polynomial in xi´a
Qn

i ,

(1 ď i ď n), that is,

Dpx1, x2, . . . , xnq “ Epx1 ´ a
Qn

i , . . . , xn ´ aQ
n

n q,
where E is a polynomial (depending on a1, . . . , an) with coefficients in F̄q . Since

fipa1, a2, . . . , anq “ a
Q
i

for all i, we know by the assumption of the Corollary that Dpa1, . . . , anq “ 0. Hence

Ep0, 0, . . . , 0q “ DpaQ
n

1
, . . . , aQ

n

n q “ Dpa1, . . . , anqQn “ 0,

and therefore the polynomial E does not have a free term. Observe that DK can be there-

fore written as sum of monomials in xi ´ a
Qn

i . Since K ě pk ´ 1qn ` 1, for each of

these monomials there exists i, 1 ď i ď n such that this monomial is divisible by at

pxi ´ a
Qn

i qk. Therefore,
´

Dpf pnq
1

px1, x2, . . . , xnq, ..., f pnq
n px1, x2, . . . , xnqq

¯K

is con-

gruent pmod IQq to a sum of polynomials, for each of these polynomial there exists

i : 1 ď i ď n such that the polynomial is divisible by pf pnq
i ´ a

Qn

i qk.

In other words, each of the above mentioned polynomials is divisible by

pf pnq
i px1, . . . , xnq ´ f

pnq
i pa1, . . . , anqqk.

Applying Lemma 3.4 we conclude that each of these polynomials belong to I
pa1,...,anq
Q ,

and hence their sum belongs to I
pa1,...,anq
Q

Proof of Theoreom 2.

By the assumption of the theorem,

Q{D0 ą npn ` 1qdn2`1,

and hence

Q{D0 ą dnppn ` 1qdn2 ´ 1q ` 1.

We will prove the theorem under the assumption above.

Observe that Q ą D0dnppn ` 1qdn2 ´ 1q ` 1 ě d ` 1 ą d. This shows that Q is Q is

greater than the degrees of fi. We have already mentioned that in this case we know that

fi´x
Q
i form a Gröbner basis with respect to Graded Lex order. Recall that in this situation

no non-zero polynomial of degree strictly smaller than Q belongs to the ideal generated by

fi ´ x
Q
i , 1 ď i ď n. In particular, if we assume that the degree of the polynomial

P “
´

Dpf pnq
1

px1, x2, . . . , xnq, ..., f pnq
n px1, x2, . . . , xnqq

¯K

(where D and K are as in Lemma 3.2), is strictly less then Q, we conclude that P does not

belong to the ideal IQ generated by fi ´ x
Q
i .

Take a polynomial D satisfying the assumption of Theorem 2 which is zero on all the

solutions of the system of equations, and non-zero at at least one point of the image of f .

We want to obtain a contradiction.

Observe that since

Q{D0 ą dnppn ` 1qdn2 ´ 1q ` 1.

we know that Q{D0 ą dppk ´ 1qnq ` 1 for k “ pn ` 1qdn2

, and that Q ą pn ` 1qdn2

.

Put K “ pk ´ 1qn ` 1 “ ppn ` 1qdn2 ´ 1qn ` 1.
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Observe that K and k satisfy the assumption of the corollary 3.2. It is essential for our

argument that K does not depend on Q. Observe that the polynomial Dpf1, . . . , fnq has at

least one non-zero coefficient, since from the assumption of the theorem we know that this

polynomial takes at least one non-zero value. This implies that the polynomial

´

Dpf pnq
1

px1, x2, . . . , xnq, ..., f pnq
n px1, x2, . . . , xnqq

¯K

.

has at least one non-zero coefficient.

This polynomial above belongs to I
pa1,...,anq
Q for any solution of the system of equations

a1, . . . , an, with Q satisfying the assumption of the corollary. Now, like in the second

version of the proof of [11], observe that if a1, . . . , an is not a solution of the system of

the equations 4, then the localisation of IQ at a1, . . . , an is the whole ring of polynomials

F̄qrx1, . . . , xns.
Indeed, we know in this case that there exists i, 1 ď i ď n such that

pfi ´ x
Q
i qpa1, . . . , anq ‰ 0.

Then 1{pfi´x
Q
i q belongs to the localisation, and since fi´x

Q
i belongs to IQ, we conclude

that 1 P I
a1,...,an

Q .

We know therefore that for any a1, ..., an P F̄q
n

(whether it is a solution of the system of

equations of whether it is not) the polynomial Dpf1, . . . , fkqK belongs to the localisation

of IQ at a1, . . . , an, and hence Dpf1, . . . , fkqK belongs to IQ. But in this case the degree

of Dpf1, . . . , fkqK is greater of equal to Q.

This completes the proof of Theorem 2.

Proof of Theorem 1. First we observe again that it is sufficient to consider words on

two letters:

Remark 3.2. Let m ě 2. For each m fix u2px, yq, . . . , umpx, yq in the free group gen-

erated by x and y such x1, u2px, yq, . . . , umpx, yq freely generate a free subgroup on m

generators. For any word w̄px1, . . . , xmq, not freely equivalent to an empty word, consider

the following word on two letters:

wpx1, x2q “ w̄px1, u2px1, x2q, umpx1, x2qq.

As we have mentioned already, this word is not freely equivalent to an empty word, and

w̄ is an iterated identity in some group whenever this is the case for w. Now assume in

addition that for each j : 2 ď j ď m there is a single occurance of x or x´1 in the word

ujpx, yq. (For example, one can take ujpx, yq “ yjxy´j ). Then the total number of x1

and x´1

1
in w and the length of w̄ satisfy lx1

pwq ď lpw̄q

Remark 3.3. Take a word wpx, yq of length l. Then w˝4 has length at most l4. The four

polynomials in x1,1, x1,2, x2,1, x2,2 for the entries of wpx, yq have degree at most l The

polynomials for for the entries of w˝4px, yq have degree st most l4.

Remark 3.4. Take

x̄ “
ˆ

1 2

0 1

˙

and y “
ˆ

1 0

2 1

˙

Take a product of L terms of the form x̄, x̄´1, y or y´1. Then the entries of the resulting

matrix are at most 3L “ exppln 3Lq. For a product of L terms of the form x̄2, x̄´2, y or

y´1 the entries of the resulting matrix are at most 6L “ expp2 ln 3Lq.
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Let w be a word on x1 and x2 of length at most l. Take y as in Remark 3.4 (this y

satisfies Convention 2.2), consider rationals functions Ri in x1, . . . , x4 which are entries

for wpx, yq, and the corresponding polynomials Hi. For each j it holds

Rj1,j2px1,1, x1,2, x2,1, x2,2q “ Hjpx1,1, x1,2, x2,1, x2,2q{px1,1x2,2 ´ x1,2x2,1qs,
where s is the number of occurrences of x´1 in w. Observe that the coefficients of these

polynomials Hi,j satisfy the assumption of Remark 3.4, and hence their coefficients are at

most 4l.

Take x as in Remark 3.4. Since x̄ and y generate a free group on two generators and

since wpx, yq is not freely equivalent to an empty word, we know that wpx̄, yq is not an

identity matrix. Moreover, we know that wpx, yq does not commute with wpx2, yq in the

free group generated by x and y, and hence the matricies wpx̄, yq wpx̄2, yq do not commute,

that is their commutator rwpx̄, yq, wpx̄2, yqs is not an identity matrix.

The coefficients of w˝4px̄, yq are at most exppCl4q and the coefficients of w˝4px̄2, yq
are at most expp2Cl4q, for C “ ln 3. Since these matrices do not commute, for at least

one of these matrices either x2 ‰ e or x3 ‰ e. We conclude that there exist intergers

xi P Z, in the image of wp4q, such that the matrix x they form is in SLp2,Zq, such that

their coefficients are at most expp2Cl4q, for C “ ln3 and such that the matrix x is not a

diagonal matrix (that is, either x2 ‰ e or x3 ‰ e). We want to find a prime number q ,

such that the image of the matrix x over quotient map to Fq is not a diagonal matrix. That

is, we want that the coefficients of the above mentioned matrix x modulo q satisfy x2 ‰ e

or x3 ‰ e in Fq .

Recall that Prime Number theorem says that the number φpxq of prime numbers smaller

than x satisfies φpxq{px{ lnpxqq Ñ 1 as x Ñ 8. In particular, we know that the number

of primes between x{2 and x is p1 ˘ ǫqx{p2 lnxq, for any ǫ ą 0 and all sufficiently large

x. This implies that for any positive integer M , there is a prime q, q ď C 1 lnM , such that

M is not divided by q. If M is sufficiently large, we can take C 1 to be close to 1.

We can therefore choose a prime q ď C 1Cl4, with C “ 2 lnp3q and C 1 close to

one if l is large enough, such there is a non-diagonal idenity matrix in SLp2, Fqq in

the image of the polynomial mapping corresponding to wp4q. In this case, fi and v,

considered over Fq satisfy the assumption on the second part of Theorem 2. Consider

the polynomial Dpx1,1, x1,2, x2,1, x2,2q “ x1,2px1,1x2,2 ´ x1,2x2,1q, and the polynomial

D2px1,1, x1,2, x2,1, x2,2q “ x2,1px1,1x2,2 ´ x1,2x2,1q. The degree of these two polynomi-

als is equal to 3. Observe that there exists a point v1,1, v1,2, v2,1, v2,2 in the image of F 4
q of

the polynomial mappings corresponding to Hp4q, such that eitherDpv1,1, v1,2, v2,1, v2,2q ‰
0 or D2pv1,1, v1,2, v2,1, v2,2q ‰ 0. Without loss of the generality we can assume that

Dpv1,1, v1,2, v2,1, v2,2q ‰ 0

Taking Q satisfying the assumption of Theorem 2 for D0 “ 3, d “ l, n “ 4, that is

Q ą 3 ˆ 20 ˆ l17.

we conclude that the system of equations Hi1,i2px1,1, x1,2, x2,1x2,2q “ x
Q
i1,i2

has a solu-

tion over the algebraic closure of Fq , such that Dpx1,1, x1,2, x2,1, x2,2q ‰ 0. If this is the

case, by Lemma 3.1 we know that the solution belongs to a finite extension K of Fq , of

degree at most Q4. The number of elements in this field is qQ
4

.

Consider K1 “ Kp?
x1,1x2,2 ´ x1,2x2,1q. The cardinality of K1 is at most q2Q

4

. Taking

in mind that we can chose q ď C 1Cl4, with C “ 2 lnp3q and C 1 close to one if l is large

enough and Q “ 61l17, we see that we can chose the field K 1 as above of cardinality at

most p2l4q614l17ˆ4 ď exppl68`ǫq for all l ě L.
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Since Dpx1,1, x1,2, x2,1, x2,2q ‰ 0, we know that x1,1x2,2´x1,2x2,1 ‰ 0, and x1,2 ‰ 0.

Dividing x by
?
x1,1x2,2 ´ x1,2x2,1 we obtain a non-identity solution in SLp2,K1q of the

system of the equations

Ri1,i2 “ x
Q
i1,i2

.

Observe that the cardinality of SLp2q over a finite field of cardinality N is N3 ´ N ď
N3. Therefore, the number of elements of SLp2,K1q is at most exppl68`ǫq, for all l ą L.

As in the previous section, we observe that any non-identity solution x in SLp2,Zq of

the above mentioned system of equations provides a periodic point : w˝mpxq “ x for some

m ě 1. And we can remark again that if w represents an element of a commutator group

in the free group, then x ‰ e, w˝mpxq “ x implies that w˝m1 pxq ‰ e for all m1 ě 1.

4. GENERAL DYNAMICS a1, . . . , ak Ñ w1pa1, . . . , akq, . . . , wkpa1, . . . , akq
Given an endomorphism φ m of a free group Fn, φ˝m denotes the m-th iteration of φ

and Hn denotes the kernel of φ˝n. It is clear that Hn is a normal subgroup, and Fn{Hn is

isomorphic to the image of φ˝n, this image is isomorphic to a subgroup of Fn, and thus is

is finitetly generated free group, Fn{Hn.

Theorem 3. Let φ be an endomorphism of a free group. For any g P Fn, g R Hn, there

exist a finite quotient group G of Fn such that φpgq ‰ e, where φ is the projection map

from Fn to G and such that φ induces an automorphsim of G.

Moreover, we can choose G as above of cardinality at most exppLCnq, wrere L “
řn

i“1
φpxiq, xi is a free generating set of Fn, and Cn is a positive constant depending on

n.

In the definition of iterated identities we consider the iteration on the first letter. Now

more generally consider s ě 1 and words w1pa1, . . . , asq, . . . , wkpa1, . . . , asq, the map-

ping

w : a1, . . . , as Ñ w1pa1, . . . , asq, . . . , wkpa1, . . . , asq and its iterations:

w˝npa1, . . . , anq “ w1pw1,˝n´1pa1, . . . , asq, . . . , wk,˝n´1pa1, . . . , asqq, . . . ,
. . . ws,˝n´1pa1, . . . , asqq.

For some tuples of words, in contrast when the iteration only on the first letter is allowed,

it may happen that some iteration of w is freely equivalent to the identity, in this case its

image is trivial in the free group, and hence in any other group. For example, if k “ 2 and

w1pa1, a2q “ w2pa1, a2q “ ra1, a2s, then it is clear that w1,˝2pa1, a2q “ w2,˝2pa1, a2q “
rra1, a2s, ra1, a2ss ” e in the free group generated by a1 and a2.

In fact, it is possible that all the coordinates of the first n ´ 1 iterations are not equal to

one in the free group, and all coordinates on the n-th iteration is equal to one:

Example 4. Consider words wi on x1, . . . , xn, n ě 2: w1 “ rx1, xns, w2 “ rx1, xns,
w3 “ rx2, xns, wi “ rxi´1, xns for i ě 3. Then for all m ě n´1 and all i (1 ď i ď n) the

word wm,i is not freely equivalent to an empty word. For all m ě n and all i (1 ď i ď n)

the word wm,i is not freely equivalent to an empty word.

Proof. Note that

x1 Ñ rx1, xns Ñ rrx1, xns, rxn´1, xnss Ñ ...

x2 Ñ rx1, xns Ñ rrx1, xns, rxn´1, xnss Ñ ...

x3 Ñ rx2, xns Ñ rrx1, xns, rxn´1, xnss Ñ ...

x4 Ñ rx3, xns Ñ rrx2, xns, rxn´1, xnss Ñ ...
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We see that for all m ě 1 the images of m-th iteration evaluated at x1, x2, . . . , xm`1

are equal. In particular, for m “ n ´ 1 the image of n ´ 1-th iteration takes the same

value at all xi, and hence wn,i is freely equivalent to an empty word for all i (1 ď i ď n).

Observe, that if for some k the elements y1, y2, . . . , yk freely generate a free group on

k generators, then ry1, yks, . . . , ryk´1, yks freely generate a group on k ´ 1 generators.

Using this fact and arguing by induction on j we observe for all j ă n the elements wj,i,

i : n´j`1 ď i ď n freely generate a group on n´j generators. This implies in particular

that for j ă n all coordinates of the j-th iteration are non-trivial.

A generalization of the first part of Theorem 1 says that if the all components of the

iteration map are not trivial in a free group, then there is a finite group where where all

components of the iterations remain non-trivial.

Remark 4.1. Suppose that the words w1px1, . . . , xnq, . . . , wnpx1, . . . , xnq are such that

w1px1, . . . , xnq, . . . , wnpx1, . . . , xnq generate a free subgroup of rank n in the free group

generated by x1, . . . , xn. Then for all m ě 1 and all i , 1 ď i ď n the iteration wi
˝m ‰ e

in the free group generated by x1, . . . , xn.

Proof. Observe that the endomorphism w : xi Ñ wipx1, . . . , xnq is injective, since

otherwise the free group Fn would have a quotient over non-trivial normal subgroup with

the image isomorphic to Fn. It is well known and not difficult to see that this can not

happen, in other words, the free group (as any other residually finite gorup) is Hopfian (see

e.g. Thm 6.1.12 in [32]). Therefore, any itetation w˝m of the endomorphismw is injective.

Hence the image of wi
˝m is isomorphic to Fn, that is, this image is a free group of rank n.

This implies in particular that for all m ě 1 and all i wi
˝m ‰ e in the free group generated

by x1, . . . , xn.

Remark 4.2. Suppose that wi
˝m ‰ e in the free group, for all m ď n and all i. Then

wi
˝m ‰ e for all m and all i.

Proof. Consider images of the free group Fn (generated by x1, . . . , xn) with respect to

w, w˝2, . . . , w˝n. If there exists at list some element , not equal to e, in the image of w˝n,

then there exists m ă n such that the rank of the free group in the image of w˝m is equal to

that in the image of w˝m`1, and this rank is at least 1. In this case the restriction of w to the

image of w˝m is injective, that is, if g, h in the image of w˝m are such that wpgq “ wphq,

then g “ h. Arguing by induction we see that for all t ě 1 the restriction of w˝t to the

image of w˝m is injective. Therefore, if w˝mpxiq ‰ e in the free group generated by x1,

. . . , xn, then w˝m`tpxiq ‰ e for all t ě 1.

Corollary 5. k ě 1, take words w1pa1, . . . , akq, . . .wkpa1, . . . , asq and suppose that for

all m the words wj,˝m are not freely equivalent to identity, for all j : 1 ď s. Then there

exist a finite group G such that for all m ě 1 and all j : 1 ď j ď s the iterations wi
˝m ‰ e

in G.

Proof of Theorem 3 and Corollary 5

We know that for all m, and hence in particular for m “ 4s that the words wj,˝m are

not freely equivalent to identity, for all j : 1 ď s.

Consider s matrices Mj over Zrxi1,i2,jsq, where i1, i2 : 1 ď i1, i2 ď 2, j : 1 ď j ď s

and xi,j are independant variables:

Mj “
ˆ

x1,1,j x1,2,j

x2,1,j x2,2,j

˙
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Consider rational functions R
pnq
r1,r2,t

in xi1,i2,j , i1, i2 : 1 ď i1, i2 ď 4, j : 1 ď j ď s

and r1 : 1 ď r1, r2 ď 2, s : 1 ď s ď s which are the entries of w˝n,tpm1, . . . ,msq,

t : 1 ď t ď s, these rational functions are of the form

R
pnq
r1,r2,t

“ P
pnq
r,t {

ź

j

pdetMjqαj ,

where P
pnq
r,t are polynomials in xi1,i2,j with integer coefficients, and αj are some integers.

We want to find a non-trivial solution over a finite field of the system of equations for

some n ě 1

(5) R
pnq
i1,i2,j

“ xi1,i2,j.

To to this, we want to find a solution of the system of the equation

(6) P
pnq
i1,i2,j

pxr,tq “ xi1,i2,j,

r ď 4, t ď s, where none of the two-times-two matrices mj , j : 1 ď j ď s is proportional

to a diagonal matrix and satisfying detmj “ x1,jx4,j ´x2,jx3,j ‰ e, for all j : 1 ď j ď s.

To do this it is sufficient to find, for some large power Q of q a solution of the system of

the equations, each Mj has determinant not equal to zero, none of Mj is proportional to an

identity matrix, none of the coordinates of the u-th iteration (u ď m, m is an appropriate

function of Q, n, and s ) of w applied to M1, . . . ,Ms is proportional to the identity matrix.

(7) Pi1,i2,j “ x
Q
i1,i2,j

over a finite field of characteristics q.

Remark 4.3. Let W is a word in x1, . . . , xn which is not freely equivalent to an empty

word Then the entry M1,2 in the upper-right corner of the matrix M (which is a rational

function in x1, . . . , xn) for the matrix

M “ W pm1, . . . ,m2q
is not equal to zero.

Remark 4.4. Let W1, W2, . . . , WN are words in x1, . . . , xn such that none of these words

is freely equivalent to an empty word. Let F1, . . . , FL are integer valued polynomials in

x1, . . . , xn, each of Fi is not identically zero. Then there exists a finite field K and x1, . . . ,

xn P K such that the (upper-right) entry M1,2,j of the matrix

Mj “ WjpM1, . . . ,M2q
is not equal to 0, for each j : 1 ď j ď N and such that Fjpx1, x2, . . . , xnq ‰ 0 for all

j ď L.

Now consider n “ N “ s , Wj “ w˝4s,j . From the assumption of the theorem we

known that none of the words Wj is freely equivalent to an empty word, and hence these

words satisfy the assumption of Remark 4.4. Consider M “ s and Fj “ x1,jx4,j ´
x2,jx3,j . From Remark 4.4 we know that there exist a point vi,j , i ď 4, j ď s in the image

of the mapping corresponding to w˝4s,j such that v1,jv4,j ´ v2,jv3,j ‰ 0 for all j and such

that v2,j ‰ 0 for all j.

Consider the polynomial in xj,i, j : 1 ď j ď s, i : 1 ď i ď 4

D “
s

ź

j“1

xj,2

s
ź

j“1

px1x4 ´ x2x3q
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The degree of D is equal to 3s, and Dpvi,jq ‰ 0 for some vi,j in the image of the

mapping corresponding to w˝4s,j . Applying Theorem 2 for n “ 4s and d to be equal to

the length of W we can conclude that there exists a solution xi,j for the system of the

equations 5, such that Dpxi,jq ‰ 0 so far as Q satisfies

Q{3s ą p4sqp4s ` 1qd16s2`1

5. OPEN QUESTIONS

We recall again that our main interest are the words in the commutator, with total num-

ber of x which is not zero (and with total number of y which is not zero). Take wpx, yq is

such that the total number X of x is not zero. The total number of x in the n-th iteration is

equal XN , and the total number in w˝npxqx´1 is Xn ´ 1. So if X ‰ 2, already without

taking any iteration wpx, yq “ x has a solution with x ‰ 0 in an Abelian finite cyclic

group, and if X “ 2, the equation for the second iteration wpwpx, yq, yq “ x has an equa-

tion in a finite Abelian group Z{2Z. For example, if we take wpx, yq “ yx2y´1, then for

the first iteration we obtain the solvable Baumslag Solitar group (so that the equation does

not have solution in finite groups with x ‰ e), but for the second iteration we do obtain

such solutions.

Given a word w, one can ask what is minimal m, which we denote by mpwq, such that

w˝pxq “ x has a non-zero solution in a finite group. What is the minimal size Mpwq of a

finite group which does not satisfy the iterated identity w.

Absence of (usual) identities in the class of finite quotients of a given group G (for

example absence of identities for all finite groups, or all finite nipotent groups etc for G “
Fm) can be a corollary of residual finiteness of G. One can make the statement quantative,

by taking a word w of length l and ask for a minimal possible size of finite quotient of G

which does not satisfy w. Or a less stronger version: for a minimal possible size where

wpx1, . . . , xnq ‰ e for a fixed finie set x1, x2, . . . , xn in G. This notion, introduced

by Bou-Rabee in [5] is called the normal residual finiteness growth function, see also

[6,9,14,26], and it is called residual finiteness growth function by Bradford Thom [8] (not

to be confused with residual finiteness growth funciton in terminology of [7], that measures

the size of finite, not necessary normal subgroups, not containing a given element), who

have proven the lower bound ě Cn3{2{ logn. Kassabov and Matucci suggested in [26]

that the argument of Hadad [21] can give a close upper bound for normal residual finiteness

growth, function, namely n3{2. A known upper bound so far is n3 [5], which is a corollary

of the estimate for SLp2,Zq, using imbedding of a free group to this group. The estimate of

Bradford and Thom is a corollary of their result, stating that for all n there exists a word wn

of length at most n2{3 lnCpnq which is an identity in alll finite groups of cardinality at most

n. Now one can ask corresponding questions related to iterated identities. In particular,

one can ask, what is the minimal length of a word wn which is an iterated identity in all

finite groups of cardinality at most n? Given a word w, we denote by NIpwq the minimal

cardinality of a group G, such that w is not an iterated identiy in G and by PEpwq the

the minimal cardinality of a group G such that w˝mpgq “ g has at least one non-identity

solution in G, for some m ě 1. It is clear that PEpwq ě NIpwq. We also denote by

PEdpnq and NIdpnq the maximum of PEpwq and NIpwq, where the maximum is taken

over all words of length at most n on d letters, not freely reduced to an empty word. Finally,

given a word w we can ask what is the minimal m such that w˝mpgq “ g has at least one

non-idenity solution in some finite group?

Another question we can ask: what are possible classes of finite groups, where with the

property that for any w, not freely equivalent to the identity, there exists a group in this
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class which does not satisfy an iterated identity w. In particular, given a subset Ω Ă N,

one can ask: for which subsets Ω, for any w, not freely equivalent to the identity, there

exists a group G, with the cardinality of G belonging to Ω, such that G does not satisfy the

iterated identity w. We have seen in the proof of Theorem 1 that it is sufficient to consider

SLp2, FQq, for Q which is a large power of a large prime q and hence the set Ω containing

numbers qn ´ q, for large enough q and large enough n, has this property. We denote by

Oint the set of Ω Ă N with the property above. By O we denote the set of subsets Ω Ă N

such that for any word w, not freely equivalent to the identity, there exists a finite group

G, of the cardinality belonging to Ω such that w is not an identity in G. It is clear that

Oint Ă O and that Oint ‰ O since the set of powers of a given prime p belongs to Oq for

all p and does not belong to Oint.
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