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Abstract – Imaging spectrometers with hundreds of spectral channels in visible and infrared 
regions are designed by various companies to enhance the information content of the relevant 
hyperspectral imagery processing compared to common-used multispectral systems. We review 
some sources on this particular subject to show the priorities of the hyperspectral approach before 
the multispectral one in forest and agriculture applications. There is also a discussion about some 
results of the information products obtained by an imaging spectrometer produced in Russia for a 
test area, where the ground-based forest inventory map is available to compare the traditional 
approaches and the newly defined ones. The related applications concern the pattern recognition 
of forest classes with different species and age on the test area using the airborne hyperspectral 
imagery processing. Copyright © 2017 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
Forest applications evolved in the pre-satellite era for 

reconnaissance and similar other purposes using aviation 
facilities. Visual decoding of air-photo-survey materials 
was among the main instruments of forest objects 
recognition by a human eye and an experienced operator 
in the first analysis results before computer era. Humans 
are the best pattern recognizers, though we do not yet 
understand how they do that without any computer 
means. 

The multi-spectral Landsat satellite systems with 
precision instrumentations have been developed since 
1972 [1]-[3]. The relevant satellite images serve to 
characterize and detect changes in the land cover and 
land use of the world. The existing methods for land 
cover change monitoring on medium scale (10–50 m) 
typically employ Landsat data to capture global land 
conditions and dynamics. 

As multi-spectral imagery of remote sensing appears, 
computational procedures of the related object pattern 
recognition have become the main tool of computer 
applications. In particular, one of the first procedures of 
this kind concerns classifying agricultural plants [4] 
using an airborne optical system. 

The neighborhood is a mathematical category of 
understanding a measure of proximity between the object 
classes in the texture analysis of pattern recognition and 
scene analysis methods.  

The neighborhood in graphs concept was given in [5] 
to introduce this measure. 

The appearance of the first optical systems of airborne 
and space-borne observations of the Earth and the 
atmosphere stimulated this discipline.  

The land surface objects called patterns gave a basis 
for their recognition using remotely sensed imagery 
processing procedures. These studies originated from 
previous science and technology developments and are 
called now cognitive technology [6]. The Charge 
Coupled Device (CCD) technology [7] enables to 
construct sensors in the newly defined type of remote 
sensing instruments within a specified “broom” 
construction that gives spectral values for each pixel of 
the image. 

The hyperspectral technology of imagery processing 
in multi-dimensional feature space given by hundreds of 
spectral bands serves to combine advances in spatial 
resolution and spectroscopy [8]. This technology looks 
nowadays as the most promising in the retrieval 
procedures of the object reflectivity taking into account 
radiometric, atmospheric and other distortions of 
registered spectral values [9].  Thin nuances of the object 
pattern recognition get feasible under the related 
techniques though optimization procedures are needed to 
diminish the possible redundancy of the spectral bands in 
the hyperspectral domain due to the possible 
interdependencies between neighboring channels. 

Cognitive technologies are based on attempts to create 
artificial intelligence systems of data mining [10]. 

Machine-learning algorithms are used to recognize 
patterns. The relevant methods include the following 
stages: creating alphabets of object classes on the images, 
defining characteristic features of these classes and 
elaborating computational procedures concerning 
decision making rules of belonging among the current 
pixels to the considered object classes [11]. 

Starting in the 1980s as an attempt to unite scientists 
in the field of observing land surface – atmosphere 
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interactions on different scales with the ultimate goal of 
climate change [12], these studies are urgent 
encompassing an upscale integration of the related 
models and remote sensing applications. 

The first techniques of automated pattern recognition 
for optical remote sensing images were given in [13], 
[14]. The first optical image processing applications dealt 
with the problem of computer vision to understand and 
simulate the nature of the phenomena that create the 
image. The emerged problem was how to define an 
objective function for the optimal solution of the 
interpretation of visual information. Any image 
processed is considered in the contextual constraints of 
its objects [15]. 

The consideration of the image distortion problem due 
to the atmosphere as scattering and absorbing media was 
also among the computational approaches of image 
processing [16]. This part of studies embedded remote 
sensing of soils and vegetation [17] and the atmospheric 
correction of remotely sensed images [18]. In parallel, 
the initial statements of computer vision were developed, 
which dealt with a corrupted image recovery [19], texture 
analysis [20], perceptual grouping [21], object matching 
and recognition [22], pattern mining [23]. All these 
studies facilitated retrieval procedures of the land surface 
parameters using the atmospheric correction techniques. 

These procedures contributed to the pattern 
recognition of different objects on remote sensing 
images. As a result, hyperspectral remote sensing is 
widely used in different practical applications such as 
monitoring forest species [24]-[26], peat and forest fires 
identification [27], and many other environmental 
problems. 

The Support Vector Machine (SVM) method is one of 
the most frequently used classifiers [28]. 

Initially, parallel hyperplanes are considered to 
separate a pair of classes, passing through the boundary 
points characterized by the feature distribution of these 
classes. 

After that, the SVM method was extended to the non-
linear case by using kernel transformation. The radial 
basis kernel is normally employed in practical 
applications to provide more exact classification and 
polynomial kernels are applicable in the cases when it is 
more important to provide the high computation speed. 

The most general way to extend SVM to multiclass 
cases consists in applying the error correcting the output 
code model. Besides the usual "one-vs-all" and "one-vs-
one" approaches, this method allows implementing the 
randomized approach which provides the optimal 
balance between calculation speed and classification 
accuracy. 

The multiclass kernel SVM can be considered as one 
of the most perspective methods of hyperspectral image 
processing. In particular, this method was used in [25] 
for the classification of forest tree species using airborne 
hyperspectral imagery obtained from the CASI imaging 
spectrometer produced in Canada. The high spatial and 
spectral resolution of the images provided the possibility 

of effectively combining texture and spectral features 
that allowed in turn to achieve high accuracy of tree 
species recognition (appr. 86%). Such accuracy is 
comparable with the standard requirements of the ground 
based forest inventory. 

The objective of this paper is to emphasize priorities 
of hyperspectral imagery processing procedures 
(hundreds of spectral channels) versus multispectral ones 
(up to ten spectral channels) in different applications 
such as agriculture and forestry, environmental protection 
and monitoring. First, some publications concerning the 
priority description in the outlined domain are reviewed. 

Further, we describe our experience in airborne 
hyperspectral imagery processing and represent some 
results obtained for a selected test area. The ground-
based measurements of the forest attributes are used to 
validate the mutual results of remote sensing forest 
inventory. Different classifiers are used to estimate their 
priorities and deficiencies in hyperspectral remote 
sensing imagery processing for the selected test area. 

Instead of the common-used concept of vegetation 
indices (different combinations of the spectral bands of 
imaging spectrometers) [29]-[32], we used the 
optimization techniques of data processing to remove the 
possible redundancy due to the correlation between 
neighboring channels [33]. The optimization allows us to 
increase the stability of training of the classifiers used. 

As a result, it is possible to gain information about the 
spatial distribution of pixels on the hyperspectral images 
and the texture of the forest areas with different species 
and ages [34]. 

Each measurement of spectral radiance or any 
derivative characteristics given by the imaging 
spectrometer can be interpreted as a point in the 
multidimensional space of features. These points might 
be clustering in the space giving useful information about 
the forest objects of different species and ages. As a 
result, the recognition procedures are realized using 
machine-learning algorithms of imagery processing. A 
conclusion is made that non-linear classifiers do have 
priorities compared to their linear analogs. 

II. Comparative Analysis of Multispectral 
and Hyperspectral Techniques 

In order to find the priorities of hyperspectral imagery 
processing compared to multispectral imagery, let us 
consider paper [35]. Here, estimates were obtained of the 
biomass for agricultural canopies using hyperspectral 
narrow-band indices calculated from the EO-1/Hyperion 
surface reflectance measurements, which were shown to 
have advantages compared to the broad-band 
multispectral indices of the high spatial resolution 
satellites (WorldView-2, IKONOS, GeoEye-1) as well as 
the lower spatial resolution satellites (MODIS  and 
Landsat/ETM+). It is not clear which satellite system 
gives the better results in this indices approach tested for 
such important crops as alfalfa, cotton, rice and maize, 
but the ability of users to choose distinct values in this 
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approach for improved crop biomass assessment 
surpasses the benefits coming with the higher spatial 
resolution of the other listed satellite sensors and the 
smoothed variability of crop biomass of the lower spatial 
resolution sensors. 

The AVIRIS (Airborne Visible/Infrared Imaging 
Spectrometer) hyperspectral images were successfully 
employed in [36] for the assessment of fire severity and 
the environmental changes caused by fire. The results 
obtained revealed the priority of AVIRIS measurements 
in comparison with the broad-band spectral indices 
calculated using Landsat data. This was due to the fact 
that the separability of post-fire environments (char, 
green vegetation, non-synthetic vegetation and substrate) 
was higher in the hyperspectral case as compared to the 
multispectral one. Thus, the fractional cover estimates 
obtained from hyperspectral data resulted to be better 
than the benefits from multispectral data to assess fire 
severity. 

One more example of priority of hyperspectral data 
compared to multispectral data is given in [37]. Here, 
both types of remote sensing data are used to assess the 
accuracy of salinity stress in sugarcane fields. The stress 
is caused by soil salinity in the sugarcane root zone 
collected at 191 locations in 25 testing fields. A 
Hyperion image compared to a Landsat ETM+ image 
along with field data was used for this purpose. The 
Hyperion data were shown to outperform Landsat data in 
the quantitative estimation of salinity stress and its 
mapping. 

One more comparison of the post-fire consequences is 
analyzed in [38] using hyperspectral data from AVIRIS 
and multispectral data from Landsat. These consequences 
include ash, charred organic matter, soils and soil 
minerals, and dead, damaged, and living vegetation 
within the high spatial resolution (2.4 m pixel size) from 
AVIRIS data compared to Landsat ETM+ data. 10 
classes of post-fire situations were analyzed within the 
selected area. The Landsat classification overestimated 
the cover by dry coniferous and ash classes and 
underestimated soil and green vegetation cover. It is not 
corresponding to real observations. As a result, the 
Burned Area Emergency Rehabilitation (BAER) map of 
burn severity areas did not capture the variable pattern of 
the post-fire surface by processing Landsat data, which 
are seen in the AVIRIS map in the detailed 
consideration. 

Hyperspectral measurements can be also used for 
assessing the performance of perspective satellite 
instruments. This kind of work is presented in [39], 
where simulated medium resolution multispectral data of 
the polar orbiting satellite Sentinel-2 (European Space 
Agency) are compared to airborne hyperspectral data for 
tropical forests. The purpose of this comparison is 
understanding the ability of Sentinel-2 mission to 
classify forest types, areas with selected dominant 
species and tree groups of different functional guilds. 

The advantage of using texture features in the 
considered classification problems is demonstrated. It is 

more important for multispectral Sentinel-2  data to have 
lower spectral and spatial resolution. The subtle nuances 
of the forest composition have to be taken into account in 
the classification techniques. These nuances are studied 
by using the classification results of the Support Vector 
Machine and Maximum Likelihood approaches. 

To continue this part of studies in [40], the capabilities 
of existing and forthcoming satellite imagers 
(multispectral and hyperspectral) are compared to soil 
variables estimate (clay, sand, silt and organic carbon 
content). The hyperspectral imagers are shown to 
contribute to the improvement of the accuracy of soil 
variables estimation from bare soil imagery; however, 
this improvement is still too limited to allow an accurate 
quantitative estimation of soil texture and Soil Organic 
Carbon. The next generation of hyperspectral satellite 
imagers is designed to improve the situation. 

The Vegetation Leaf Area Index (LAI) is the main 
parameter characterizing the relevant patterns by the 
narrow-band hyperspectral and traditional broad-band 
multispectral data [41]. This study uses the advantage of 
the LAI dataset collected at the same total time and the 
grain size by Landsat ETM+ and AVIRIS imagery in 
four different biomes. The sampled biome types included 
mixed hardwood-conifer and boreal conifer forests, row-
crop agriculture and tall-grass prairie. It was shown that 
models based on the broad-band datasets predict the LAI 
values less accurately than those with selected subsets of 
AVIRIS channels. The Vegetation chlorophyll content 
can be obtained from narrow-band hyperspectral data as 
an alternative to broad-band multispectral data. 

Corresponding estimates for the Mediterranean pine 
plantations in Spain are presented in [42]. The known 
leaf model PROSPECT-5 and radiative transfer model 
DART were employed for the retrieval purpose of 
modeling using available hyperspectral and multispectral 
satellite sensors in the form of ratios of measurements on 
the 750 and 710 nm wavelengths (the red-edge index) as 
well as on 800 and 560 nm. The high-resolution 
hyperspectral images allowed obtaining the strongest 
relationships in the chlorophyll content retrieval. 

Hyperspectral narrow-band and multispectral broad-
band indices were used in [43] to estimate 
evapotranspiration (ET) rates (mutual effect of soil 
moisture evaporation and vegetation transpiration). The 
ET rates give information about micro- and macro-scale 
climatic processes to monitor droughts, schedule 
irrigation, and assess crop water productivity over large 
areas. Ratio-based vegetation indices retrieved from 
optical remote sensing data are used for the estimates. 

The study revealed that the hyperspectral narrow-band 
indices consistently explained a higher variability in ET 
than the indices obtained from the multispectral sensors. . 

The problem of classification and mapping of tree 
species in tropical seasonal forests is considered in [44]. 
Airborne hyperspectral and simulated multispectral 
images of Brazilian Atlantic semi-deciduous forests in 
450-2400 nm spectral range were used. Three different 
types of supervised classifiers were applied to recognize 
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the species at the pixel level. The Linear Discriminant 
Analysis revealed better results compared to Kernel 
Support Vector Machines (linear and radial kernels) and 
Random Forests almost for all considered tests. The 
inclusion of shortwave infrared bands (SWIR, 1045–
2400 nm) revealed the increase of accuracy from 70% up 
to 84% compared to using the visible/near-infrared 
(VNIR, 450–919 nm) bands. 

The productivity retrieval of the leading world crops 
of cotton, wheat, maize, rice, and alfalfa is discussed in 
[45] for the NASA HyspIRI mission. That is the 
Hyperspectral Infrared Imager mission that is designed to 
study world ecosystems and provide information on 
natural disasters (droughts, wildfires, volcanoes etc) to 
retrieve types and conditions of vegetation covers. The 
main purpose of this publication consisted in modeling 
the crop productivity and discriminating crop types using 
available and perspective hyperspectral and multispectral 
imagers, though this mission is primarily designed to 
observe natural disasters. Overall, the crop biophysical 
models based on hyperspectral data and related narrow-
band vegetation indexes explained approximately 25% 
wider variability compared to multispectral broad-band 
models. 

To continue this short review concerning the 
comparative analysis of multispectral and hyperspectral 
techniques, we have to discuss our own experiments [46] 
in hyperspectral imagery processing using the domestic 
airborne hyperspectral instrument series produced in 
Russia and ground-based field campaign measurements 
on a test area. The estimation of accuracy of 
hyperspectral imagery processing was performed by 
using random resampling techniques such as cross-
validation [47] and bootstrapping [48]. 

The Details of these methods are described in [49]-
[52]. We elaborated an original approach to separate 
sunlit tops of trees, the completely shaded background of 
forest phyto-elements, and the partially illuminated and 
partially shaded features of the forest canopy on the 
images. The separation is conducted due to essentially 
different spectral features of these three categories of 
forest canopy. This is necessary because of the high 
spatial resolution of the imager (near 1 m) since random 
pixels on the images under processing are distributed in 
accordance with the three above categories that form the 
particular image, unless the boundaries between forest 
classes appears. The image producers ensure high values 
of signal-to-noise ratios of their device only for sunlit 
tops. Every forest class is represented by the alternation 
of the listed three categories of pixels for the forest 
canopy. The classification results were compared to 
separate plots on ground-based maps, which are needed 
to validate the information products of imagery 
processing. Thus, it is necessary to discriminate these 
forest canopy categories to recognize tree species and 
ages and estimate forest inventory parameters within the 
plots. That is why such complicated procedures are 
undertaken, which are not typical for Landsat data 
processing of lower spatial resolution. 

III. Discussion 
The analysis of publications [35]-[45] has shown that 

both spectral and texture features extraction from 
multispectral and hyperspectral images is an original 
process that cannot be solved in advance for every object 
in a particular scene. A necessity emerges to optimize the 
computational procedures of the objects pattern 
recognition having in mind the spectral and texture 
features for the scene depending on the spectral and 
spatial resolution of the type of imaging spectrometer. 

Further, the results obtained by such airborne 
hyperspectrometer having both high spectral (287 
spectral channels in visible and near infrared region) and 
spatial resolution (approximately 1 m at the flight 
altitude about 2 km) will be discussed. 

The last version of the domestic hyperspectral 
instrument is given by Fig. 1 (the external view and its 
view in the delivery set). This imaging spectrometer is 
installed on a gyro-stabilized platform of the airborne 
carrier and may be installed on Unmanned Aerial 
Vehicles (UAV). 

 

 
 

Fig. 1. The domestic imaging spectrometer that is installed on an 
airborne gyro-stabilized platform for remote sensing 

 
The instrumentation details are described in [46] 

operating in the spectral range 401-1017 nm together 
with the techniques of imagery processing elaborated by 
us. The algorithms for the retrieval of forest stand 
attributes are based on the optimization and classification 
methods listed below. 
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In the algorithms, the holdout cross-validation method 
[47], [48] was used to find regularized solution of the 
calculation problem that is too much sensitive to 
variations in the learning samples. This enables to select 
the information layers for a particular class of forest 
canopy pixels belonging to sunlit tops, half-shaded areas 
and completely shaded spaces between tree crowns on 
hyperspectral images. As a result, the separation of these 
information layers serves to improve the classification 
accuracy of forests species and ages. 

In [49], the approach of supervised classification 
procedures for the land surface objects using their 
spectral and texture characteristics on hyperspectral 
images was improved. The improvement concerned the 
retrieval of biological productivity parameters for the 
recognized forest stand composition. Direct and inverse 
modelings were performed in terms of the projective 
cover and density of the forest canopy for the selected 
forest classes. 

The Characteristic features of the information 
products obtained for the test area are presented. The 
results are compared to the ground-based forest inventory 
map and revealed the automation prospects of the 
recognition of forest ecosystems using hyperspectral 
images while employing the proposed apparatus and 
programming system of imagery processing. 

Further, the results of machine-learning algorithms 
and optimization procedures concern the retrieval of 
productivity parameters for the related classes of forests 
[50]. The relevant procedures are based on solving the 
direct problem of atmospheric optics consisting in 
modeling the spectral characteristics of the forest canopy 
at different conditions and the inverse problem of forest 
parameters retrieval. The inverse modeling employs the 
relations between the projective and production 
characteristics to find parameters as the biomass of tree 
components and net primary production. 

Paper [51] opens up details on the basic modeling 
approach concerning improvements of Bayesian 
classifier for airborne hyperspectral imagery processing. 

The connectivity of pixels corresponding to different 
forest classes was described using the maximum a 
posterior probability and Markov random fields. 

We introduced energy categories for the selected 
classes to estimate the measure between the spectral 
measurements and the theoretical functions 
approximating the processed images. Optimization 
procedures allowed to recognize forest classes taking into 
account thin differences in their spectral characteristics. 

Thus, the correlated non-informative channels of 
imaging spectrometer are excluded from consideration. 

To enhance the efficiency of processing hyperspectral 
images, in [52] the ability of different basic classifiers 
was considered. These are the metric classifier based 
Euclidean distance, the K nearest neighbors classifier 
with optimized incomplete enumeration, the parametric 
Bayesian classifier based on Gaussian Mixture Model, 
and the kernel Support Vector Machine extended to 
multiclass classification by using the error correcting 

output codes. It was shown [52] that nonlinear classifiers 
have significant advantages for the considered problem 
of classification of the vegetation cover. 

To further discuss the listed classification methods of 
hyperspectral imagery processing, let us consider the 
comparison of their application with ground-based forest 
inventory procedures. Figs. 2-4 give some results of such 
comparison. 

 

 
 

Fig. 2. Area within Savvatyevskoe forestry Tver region (Russia) 
covered by airborne hyperspectral measurements and the test region. 

The map of the test area includes two frames: of the orange color with 
the ground-based forest inventory color representation of the quarters 

and plots inside them; of the green color inside the area with its internal 
forest inventory map (the upper frame) and the RGB-synthesized image 
(the lower frame). Locations of the airborne tracks are indicated by the 

red lines on the lower picture 
 

Fig. 2 depicts the area of size 10×4 km (highlighted by 
the orange frame), where the airborne hyperspectral 
measurements were performed. The particular sub-area 
(highlighted by green frame) was used for the 
quantitative comparison of processing results and 
ground-based forest inventory data. The RGB-
synthesized image of this test area serves for the visual 
analysis of objects on the considered scene. 

The entire test area was encompassed by 13 
overlapped images obtained from the airplane equipped 
on the same gyro-stabilized platform by the imaging 
spectrometer and photo-camera. The location of the 
direct and opposed flight tracks are represented by red 
color lines in the lower part of the scene (Fig. 2).  
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The Parameters of sets containing spectral radiances 
of forest classes (forest areas of different species and 
age) are given by Table I. These sets were used for 
training the classification algorithm used. 

Pine species of the age from the young forest (13 
years old) to the mature forest (136 years old) with near 
to ten years resolution are prevailing. 

 
TABLE I 

PARAMETERS OF THE SPECTRAL RADIANCE ENSEMBLES  
FOR THE SELECTED FORESTED AREA 

Species Age Number of spectra Local time of the airplane 
tracks 

Pine 

13 1046 11-10-57 
16 2428 11-31-32 
26 2061 12-05-23 
36 447 11-10-57 
47 5025 11-17-58 
56 1807 11-46-25 
66 7551 11-52-48 
76 1557 11-52-48 
76 4019 11-59-25 
86 2055 11-46-25 
96 3156 11-38-02 

106 2191 11-59-25 
116 644 11-24-25 
126 1932 11-04-17 
136 695 11-46-25 

Birch 
16 1729 11-31-32 
51 1634 11-38-02 
71 5656 11-46-25 

Aspen 11 2545 11-38-02 
Elm – 534 10-47-53 
 
Each hyperspectral image corresponding to red lines 

on the lower image of Fig. 2 has 500 pixels across the 
flight direction and 10000-14000 pixels along the flight 
direction. The flight altitude is approximately 2 km 
above the ground level with typical deviations of about 
10 m. The maximum deviation is 58 m. Thus, the spatial 
resolution across the track is stable and amounts to 1.1 
m. The pixel size along the track depends on the flight 
speed and changes within 0.66-0.91 m. 

The landscape of the test area contains different types 
of natural and artificial objects: water bodies, open soils, 
roads, buildings, forests, grasslands. As we can see from 
Fig. 2, about half of the area is covered by forests, 
therefore the ground-based forest inventory maps are 
available. A field campaign was performed to obtain geo-
botanical descriptions and to more precisely define forest 
typology and other parameters indicated in the available 
forest inventory for the test area. These works allowed to 
improve validation and ground truth estimates. 

The typical forest inventory procedure in Russia 
usually deals with obtaining ground-based maps for a 
particular area as separated compartments and plots 
within them. The maps are represented by specific colors 
(the plots for prevailing birch species by blue; the same 
for prevailing pine species by orange; forest plantations 
are denoted by the horizontal hatching, etc.). The darker 
color characterizes more aged forests for the listed 
species. 

Each compartment and plot has its own number on 
these maps. For each plot on the map are usually given 

the following data: an identity number, the average age 
of the dominant tree species, a total area of the plot 
expressed in square meters and the cite index 
characterizing wood quality. The higher values of cite 
index correspond to the sluggish growth and to the low 
quality of stem wood. Not all plots are represented by 
this full set of numbers on Fig. 2. The full list of ground-
based forest inventory includes the following parameters: 
the type of plant growth (natural or artificial), the number 
of quarters and plots, square meters of their areas, their 
wood volumes and ages, the wood quality, the density of 
each plant, the forest typology concerning inter-crown 
vegetation, the average diameter and height of each 
stand, species composition of the plots. These are typical 
vector layers for the forest recognition while using the 
related cartographic materials. 

Two frames of Fig. 2 (of the orange and green color) 
represent the entire test area and its internal part, 
respectively. This particular part of the terrain includes 
the sand pit filled in with water (visible on the upper 
right corner), bare soils (at the lower right corner) and 
large amounts of forest vegetation with the pine and 
birch trees prevailing at the remaining part of the green 
color frame. In particular, the sand pit in the lower right 
corner consists in two sand hills divided by the road and 
scare vegetation denoted by number 66 at the upper 
frame. At the lower frame of the RGB-synthesized image 
this area looks as a completely forested one. Our 
intention is to recognize these forests of different species 
and age along with the other objects available on this 
scene using our original algorithmic and programmatic 
tool of hyperspectral imagery processing. 

The recognition results of the objects within the green 
frame by the Bayesian classifier with the Gaussian 
mixture model of radiances are represented in Figs. 3. In 
general, these objects are given by the water body in the 
upper right corner (blue color on Fig. 3(a)), bare soils 
with scare vegetation in the lower right corner (yellow 
and magenta colors) and by the forests of different 
species and age in the remaining part of this scene 
(prevailing green color). The magenta color corresponds 
to the unrecognized objects, which are mainly located on 
the coast of the sand pit, on the road and between 
different slopes of the pit. These pixels mean that the 
corresponding spectral portraits are likely to be absent in 
the training set. That is why the related objects are 
referred to as unrecognized. The aspen pixels are 
apparent for plots 1, 2, 7 and 16. 

The spatial distribution of the main types of forest 
objects within the relevant plots represented by white 
digits from 1 to 18 can be seen in Fig. 3(a). The 
boundaries of these plots are depicted by white lines, 
ground-based forest inventory data can be seen from 
Table II for each plot. Number of stands within each plot 
together with the average age, the greenness class (from 
1 to 3), the average diameter of the stands, their height 
and species composition are given in Table II. In 
particular, we can see young forest at plot 16, the lowest 
greenness class at plot 18 and the species composition 
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from the pure pine plots (10P, numbers 1, 4, 7, 9, 14, 17) 
to the half pine and birch areas (5P5B, plot 8). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 3. Classification results using parametric Bayesian classifier 

based on Gaussian mixture distribution: (a) – main types of the objects 
on this terrain; (b) – forest species (taking into account gradations of 

the forest canopy illumination by the Sun); (c) – the average forest ages 
within each plot (years) 

 
TABLE II 

FOREST INVENTORY DATA FOR THE TEST AREA 

Plot 
numbers 

Stand 
volume 
m3/ha 

Age, 
years 

Site 
index 

Diameter 
cm Heightm 

Species 
compo- 
sition 

1 260 58 2 18 18 10P 
2 210 58 2 18 17 8P2B 
3 180 60 2 18 20 8B2P 
4 220 57 2 16 16 10P 
5 180 60 2 18 20 8B2 
6 280 60 2 18 19 6P4B 
7 210 58 2 18 17 10P 
8 300 65 2 20 20 5P5B 
9 200 60 3 16 16 10P 

10 260 64 2 18 18 9P1B 
11 210 59 2 18 17 9P1B 
12 300 65 2 20 20 6P4B 
13 250 60 2 20 23 8B2P 
14 220 58 3 16 16 10P 
15 260 60 2 20 23 7B3P 
16 30 5 2 2 3 9P1B 
17 220 70 2 20 20 10P 
18 300 60 1 20 20 7P3B 

 

The retrieval of the age composition in the considered 
forest plots is represented in Fig. 3(c).  

The results obtained depend on the dominant species 
of the plot (the pine or birch in this case). As we can see, 
the remote sensing estimates of the age composition do 
not agree with the ground forest inventory so well as it 
was for the species composition.  

In particular, plots 1, 2, 4 and 7 contain trees with the 
same age and site index (see Table II). The age 
composition of plots 1 and 2 is reproduced well enough; 
however, the significant part of stands within plots 4 and 
7 is classified as mature forest (age is 90 years and older) 
which does not agree with ground based data. This non-
conspiracy can be partly explained by the different 
origins of the stands: plots 1 and 2 contain forest 
plantations and plots 4 and 7 have a natural origin. 

The age of stands within plot 14 is overestimated in 
15-20 years. However, the pixels of plot 17 are classified 
as pine trees of 70-80 years old, which is in agreement 
with the ground-based forest inventory data.  

The former logging places are seen for plot 16, where 
there seems to be re-growth vegetation with young 
forests nominated as 9P1B. A certain amount of pixels 
containing aspen trees can also be seen, in accordance 
with the results obtained. 

Root mean square errors of retrieval of the forest 
species composition (in percent) are represented by the 
colored bars for three considered gradations of canopy 
illumination (Fig. 4). The natural level of errors due to 
the boundary pixels of the plots is represented by the 
black bar. The 10% error corresponds to the requirements 
of the ground-based forest inventory. 

We should also note that the age retrieval of the birch 
stands is usually underestimated compared to the 
inventory data. 28% of pixels corresponding to birch 
stands are classified as 16 years old, 49% as 51 years old 
and the remaining 23% as 71 years old. Thus, the pixels 
corresponding to the mixed forest areas are classified as 
being younger than the pixels within pure pine areas. The 
pine prevailing plots, on the contrary, are normally 
classified as being older than it is represented in ground 
data. The worst situation is for young forests. In 
particular, plot 16 should contain young pine forest 
following the inventory information. However, the pixels 
classified as the young forest mainly correspond to the 
birch stands. The pine stands in the right bottom corner 
of this plot are classified as the ripening forest. 

 

 
 

Fig. 4. The classification errors for the proposed model  
of the pattern recognition 
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Thus, it is possible to separate the contribution of the 
considered gradations of illumination of tree crowns for 
the selected regions.  

The errors are higher for the plots with prevailing 
birch stands. Also, we can see the pixels within the plot 
16 classified as aspen, which is not available in 
accordance with forest inventory data. 

The total weighted error amounts to 8.3%, for the 
shadowed pixels it is 9.7%, for the partly illuminated – 
8.2% and for the completely illuminated – 7.7%. These 
errors occur to be not larger than those obtained in the 
ground-based forest inventory procedures.  

The pixels classified as the aspen amount to 0.6% of 
the total number of the forest pixels. 

The relatively low errors of the pattern recognition of 
forests as compared to the similar errors of the ground-
based forest inventory can serve to replace these 
laborious works by the proposed hyperspectral imagery 
processing. 

IV. Conclusion 
The short analysis of publications dealing with 

imagery processing has shown that both spectral and 
texture features extraction from multispectral and 
hyperspectral images are original processes that cannot 
be solved in advance for any object on a particular scene. 

A necessity emerges to optimize the computational 
procedures of the objects pattern recognition having in 
mind the spectral and texture features of the scene 
depending on the spectral and spatial resolution of the 
type of imaging spectrometer used.  

Therefore, some results obtained by such airborne 
hyperspectrometer having both high spectral resolution 
(near to 200 spectral channels in visible and near infrared 
region) and high spatial resolution (near to 1 m from the 
altitudes 1.5-2 km) were discussed. 

The analysis enabled to compare the results of the 
imaging spectrometer data processing for forest canopies 
of different species and ages with the common-used 
ground-based forest inventory procedures. The results 
have shown that the accuracy of forest attributes retrieval 
is not worse than this routine laborious work of forest 
inventory.  

That contributes to the prospects of forest inventory in 
the newly defined domain of hyperspectral imagery 
processing. 

To enhance the computational efficiency it is required 
to create parallel algorithms of hyperspectral imagery 
processing. The first attempts in this direction are 
described in [53]. However, the results of data parallel 
processing require a separate study. 
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