Electronic structure of lead telluride-based alloys, doped with vanadiumстатья
Информация о цитировании статьи получена из
Web of Science,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 4 октября 2013 г.
Аннотация:The crystal structure, composition, galvanomagnetic properties in low magnetic fields (4.2 K ≤ T ≤ 300 K, B ≤ 0.07 T), and the Shubnikov–de Haas effect (T = 4.2 K, B ≤ 7 T) are studied in Pb1−x−ySnxVyTe (x = 0, 0.05–0.18) alloys synthesized by the Bridgman technique with variable vanadium impurity concentrations. It is shown that increasing the vanadium content leads to the formation of regions enriched in vanadium and of microscopic inclusions of compounds with compositions close to V3Te4. In Pb1−yVyTe stabilization of the Fermi level by a deep vanadium level, an insulator–metal transition, and a rise in the free electron concentration are observed as the vanadium content is increased. The variation in the free charge carrier concentration with increasing vanadium concentration in Pb1−yVyTe and Pb1−x−ySnxVyTe (x = 0.05–0.18) alloys is compared. Possible models for rearrangement of the electronic structure in Pb1−x−ySnxVyTe alloys with vanadium doping are discussed.