On rational approximation of a geometric graphстатья
Информация о цитировании статьи получена из
Web of Science ,
Scopus
Статья опубликована в журнале из списка Web of Science и/или Scopus
Дата последнего поиска статьи во внешних источниках: 2 октября 2014 г.
Автор:
Benediktovich V.I.
Журнал:
Discrete Mathematics
Том:
313
Номер:
20
Год издания:
2013
Издательство:
Elsevier BV
Местоположение издательства:
Netherlands
Первая страница:
2061
Последняя страница:
2064
DOI:
10.1016/j.disc.2013.06.018
Аннотация:
A geometric graph is rational if all its edges have rational lengths. In 2008 M. Kleber asked for what graph the vertices can be slightly perturbed in their Ïμ-neighborhoods in such a way that the resulting graph becomes rational (the Ïμ-approximation) and in addition the vertices can have rational coordinates (the rational Ïμ-approximation). J. Geelen et al. in 2008 proved that any geometric cubic graph has a rational Ïμ-approximation for any Ïμ>0. In 2011 A. Dubickas assumed the existence of up to four vertices of degree above 3. We prove that any connected geometric graph with maximum degree 4 and a vertex w of degw<4 and any 3-tree have Ïμ-rational approximations for any Ïμ>0. © 2013 Elsevier B.V. All rights reserved.
Добавил в систему:
Бенедиктович Владимир Иванович